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Abstract

The relative equilibria of a symmetric Hamiltonian dynamical system are the critical points
of the so-calledaugmented HamiltonianThe underlying geometric structure of the system is
used to decompose the critical point equations and construct a collection of implicitly defined
functions and reduced equations describing the set of relative equilibria in a neighborhood of a
given relative equilibrium. The structure of the reduced equations is studied in a few relevant
situations. In particular, a persistence result of Lerman and Singer [Nonlinearity 11 (1998) 1637—
1649] is generalized to the framework of Abelian proper actions. Also, a Hamiltonian version of the
Equivariant Branching Lemma and a study of bifurcations with maximal isotropy are presented. An
elementary example illustrates the use of this approach.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The systematic analysis of bifurcations of relative equilibria was greatly stimulated
about fifteen years ago by specific applications involving nonconservative vector fields,
namely the secondary bifurcations from nontrivial equilibria in hydrodynamical systems
such as Couette—Taylor flows and Rayleigh—Bénard convection in a spherical shell. The
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problem was attacked analytically by Chossat and looss [7], and more qualitatively by
Rand [37]. A major success of the analytical approach was obtained by looss [19], who
classified the possible patterns bifurcating from a group orbit of equilibria in a system with
symmetryO (2). In Moutrane [32], the bifurcation of rotating waves, which are relative
equilibria with a single drift frequency, was investigated in the problem of the onset of
convection in a system with spherical symmetry. However it was Krupa [20] who first
developed a general theory for bifurcations from relative equilibria. The basic tool he used
was thelnvariant Theorenof Palais (see [4,36]). I&G is a Lie group acting properly on

a manifold M, the Slice Theorem establishes an isomorphism for @aehM between

a tubular neighborhood of the orhit - m and thenormal bundle with baseG - m and

fiber equal to the normal slic#,, to the tangent space 6 - m atm. It was shown by

Field [11] and then by Krupa that within such a tubular neighborhood@m®guivariant
vector fieldX € X(M) can be decomposed into the sum of two vector fields: anhe,
defined on the normal bundle, and the othér, defined on the tangent bundle @- m.

Krupa showed that the dynamical information, in particular the bifurcation properties for
a parameter dependent family of vector fields, are entirely containgg in

The analysis of relative equilibria of conservative systems has played a central role in
the development of geometric mechanics, ranging from the classic work of Riemann [38]
and Routh [40,41] to Smale’s seminal work [43]. However, the use of local singularity
theory methods, rather than explicit calculations or global topological methods, in the
analysis of conservative systems is relatively recent. (See, e.g., [10,14,18,22,29] and the
references discussed below.) Bifurcations of relative equilibria of Lagrangian systems
and canonical Hamiltonian systems, i.e., Hamiltonian systems on cotangent bundles,
with the canonical symplectic structure and a lifted group action, have been studied
by Lewis et al. [27] and Lewis [24,25] using the reduced energy-momentum method
developed in [42] and [23]. This approach uses the locked Lagrangian, the generalization
of Smale’s augmented potential to Lagrangian systems and their Hamiltonian analogs, to
characterize relative equilibria as critical points of functions on the configuration manifold
parameterized by elements of the algefpaf the symmetry grougs. A key component
of the reduced energy-momentum method is the decomposition of the tangenfgpace
of the configuration manifold? at a pointg into the tangent spacg- ¢ to the group
orbit and an appropriate complement consisting of so-called ‘internal’ variations. The
associated decomposition of the relative equilibrium equations into ‘rigid’ and ‘internal’
equilibrium conditions is analogous to the decompositions introduced by Field [11] and
Krupa [20] in the context of general equivariant vector fields. The ‘rigid’ condition can be
used to determine a submanifold of ‘candidate relative equilibria;’ imposing the remaining
equilibrium conditions on this submanifold determines the relative equilibria.

Our goal is the development in the symplectic category of a decomposition tool
analogous to that of Krupa that will take into account the additional structure present
at the kinematical level in Hamiltonian systems, without assuming all the ingredients
utilized in the reduced energy-momentum method. Given that many Hamiltonian systems
are constructed on symplectic manifolds that are not cotangent bundles, such a tool is of
much interest. The analog of the Invariant Slice Theorem in the symplectic category is
given by theMarle—Guillemin—Sternberg normal forft6,17,28] (we will refer to it as the
MGS—normal formso, in principle, one could work as in Krupa [20] using this normal
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form instead of the Slice Theorem. This does not seem to be the best way to proceed,
since to search for relative equilibria of Hamiltonian systems one does not need to work
with the Hamiltonian vector field; there are scalar functions aithgmented Hamiltonians
whose critical points are precisely the relative equilibria. Guided by Krupa’s normal bundle
decomposition for equivariant vector fields and the MGS-normal form, in Section 2 we
will construct aslice mappingvith which we can decompose the critical point equations
determining the relative equilibria into a system of four equations. These split critical point
equations are analyzed in Section 3 in a neighborhood of a given a relative equiliyium
Using the Implicit Function Theorem and Lyapunov—Schmidt reduction, we can construct
a local submanifold containing all relative equilibria sufficiently near the group orhit of

The remaining equilibrium conditions, called theduced critical point equationsan

be analyzed on this submanifold using standard techniques from bifurcation theory. In
Section 3.1 we study the equivariance properties of the reduced critical point equations.
In Section 3.2 we show how to choose a slice mapping so that one of the reduced critical
point equations admits a simpler solution.

In Section 4 we use the reduced critical equations and a slice mapping constructed
via the MGS-normal form to study the persistence of a family of relative equilibria in
a neighborhood of a nondegenerate relative equilibrium when the symmetry group of the
system is Abelian. In particular, we generalize to proper group actions a result from Lerman
and Singer [21] originally proven for compact groups. This result was already presented
in [33].

In Section 5 we study bifurcations from a degenerate relative equilibrium and find
Hamiltonian analogs to bifurcation theorems for solutions with maximal isotropy which
were first stated in the nonconservative context, namely the Equivariant Branching Lemma
of Vanderbauwhede [44] and Cicogna [9], and a theorem for bifurcation of solutions with
maximal isotropy group of complex type [8,30].

In Section 6 we apply the results developed here to a systefiffanodeling a 1 2
wave resonance. Such models have been analyzed in [5] and [6]; thus this example allows
a comparison of our approach to previously employed techniques.

2. Relativeequilibria ascritical points

Let G be a Lie group acting smoothly on the maniféfdand letX € X(M) be a smooth
G-equivariant vector field o with flow F;. We now briefly introduce some of the key
notations used here. Let expp+> G denote the exponential map from the Lie algeppra
of G to G, g - m denote the image af € M under the action o € G, and&,, denote the
vector field

d
Em(m) = - €Xp(eE) - mle=o,
€

called theinfinitesimal generatoassociated t§ € g. Given a subspaceof g and a point
m € M, we set

s-m:={Ey(m) | & €5} CT(G-m),
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whereG - m :={g - m | g € G} denotes the orbit ofz. If M and N are manifolds and
¢:M — N is a differentiable map, then the linearizationgfat m € M is denoted by
T :TuM — ToumN; if N is a vector space, then the linear mag(m): T,,M — N
is defined using the standard identification Bf,,) N with N. If F maps a product
Vi x -+ x V. of vector spaces into a vector spabe then Dy, F(v1, ..., v):V; —> N
denotes the partial derivative &f with respect to thgth factor. Given a subspadg of a
vector spacé/, W° C V* denotes the annihilator ¥ .

Let X € X(M) be a smoothG-equivariant vector field o4 with flow F;. We say
that the pointn, € M is arelative equilibriumof the vector fieldX if there exists an
elementt of the Lie algebrgy of G, called agenerator of the relative equilibriupsuch
that F; (m,) = exp(t&) - me; m, is a relative equilibrium with generatdrif and only if
X (me) =&p(m,).

We are interested in relative equilibria of Hamiltonian systems. Specifically, we assume
throughout the paper that the manifald is symplectic and that the action 6f on M
is symplectic, with associated equivariant momentum ma@ — g*. In addition, we
assume that the equivariant vector fifdis Hamiltonian, with associated-invariant
Hamiltonianz € C*°(M). In this framework, the search for relative equilibria reduces to
the determination of the critical points of a certain family of functions. Indeed, a classical
result ([1, p. 307] and [3, p. 380]) states that a peipte M is a relative equilibrium o/,
with generatok e g if and only if m, is a critical point of theaugmented Hamiltoniah
given by

h® (m) :=h(m) — (I(m), §)

for all m € M. Thus, our algorithm is intended to identify the paiss., £) € M x g such
that

Dhe (m,) = 0. 1)

Note that ifm, has nontrivial continuous symmetry, i@, ={¢ € g | tp(m.) =0} # {0},
then the generator af, is not unique. I is a generator of a relative equilibrium., then
forany¢ € gm,, £ + ¢ is also a generator.

The main goal of this section is the decomposition of teéative equilibrium
equation(1) into a systems of four equations, each defined on a space determined by the
geometry of the problem.

Assume thatz, is a relative equilibrium with generatgrand momentuny := J(m.).

Letg,,, denote the Lie algebra of the isotropy subgraip, of m. andg,, the Lie algebra
of the isotropy subgrouy,, of ;. Choose complementsof g, in g andm of g,,, in g,,
so that

=0, Pq=0gn ®mDq. (2)

The symbols and P with appropriate subscripts will denote the natural injections and
projections determined by the splittings (2). For instaiyge: gm, — 9= gm, ®m D qis

the canonical injection of,,, into g andPy, g = g, ® M & q — gm, EXtracts they,,
component of any vector ig.
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Definition 2.1. Let V be a vector space aid Cc m* x V be an open neighborhood of
(0,0) e m* x V. A smooth mapping’ :U C m* x V — M is said to be alice mapping
at the pointm, € M if ¥ is a diffeomorphism onto its image satisfying the following
conditions:

(SM1) ¥ (0, 0) = m,.
(SM2) For any(n,v) eld

Td/(n,v)M =meéq)-¥Y(n,v)+ T(n)v)lll(m* x V). 3

(SM3) The pullback :=Jo ¥ :U — g* of the momentum map satisfies

Dj(0,0)(8n, 8v) =Py, 6n (4)
forall 6n e m* anddv € V.

In the following proposition we show that given a coordinate chart at a poiirt a
finite-dimensional manifold/, we can explicitly construct a slice mappidgatm.

Proposition 2.2. Let ¢ :U C X — M be a coordinate chart at a point in a finite-
dimensional manifold/ and letV and W be subspaces of the vector spacsuch that

() ¥(©0) =m,
(i) Toy(V)is acomplementten - m in kerDJ(m),
(i) the map

AW — (gm@q)o
w = DI(m)(Toyw),
is an isomorphism.

Let vV’ and W’ be neighborhoods of the origin i and W such thatV’ x W’ c U and set
U:=i} (AW') x V Cm* x V. Then the map

v:UCcm*xV - M
n,v) —~ I//(U + A_llP’j;n)
is a slice mapping at: € M.

Proof. Property (SM1) follows trivially from (i). Property (SM3) follows from (ii), (iii),
and the definition ofr.
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As the first step in the proof of (SM2), we show that (3) hold€a0). Note that (SM3)
implies that

kerDJ(m) N To,0)¥ (m* x {0}) = {O}. (5)
Combining (i), (2), and (5), we obtain
dimT(0,0¥ (m* x V) = dimm +dimV = dim(kerDJ(m))
= dimM —dim(g - m) =dimM — dimm — dimg. (6)
If ¢ar(m) = T0,00% (67, 6v), then, sincel satisfies (SM3),
DJI(m)¢py(m) = DJ(lI/(O, O))(T(o,o)ll/(8n, Sv)) =P} én.
On the other hand, equivarianceXlimplies that
DJI(m)¢py(m) = — adg ueme.
Hence agu =0, i.e.,¢ gy, andiy(m) € g, - m =m - m. Thus condition (ii) implies
that¢y (m) = 0. Combining this result with (2) and (6) shows that (3) is valid®aD).
We now show that (3) holds for anfy, v) € U. Let {&1,...,&;}, {n1,...,m}, and
{v1, ..., v¢} be bases fom @ ¢, m*, andV. Definethe maps; .U - TM,i=1,...,j+

k+¢, by

EDm (¥ (0, ), 1<i
ui(n,v) :== 1 To.n¥ mi-j,0), j<i +k,
To¥O,vi—jk), j+k<i<j+k+E

<J
<J

The arguments given above show thiai(0,0), ..., u;1.4¢(0,0)} is a basis forT,, M.
Since linear independence is an open conditiem(n, v), ..., u j+i+¢(n, v)} is a basis of
Ty y,vyM for (n, v) sufficiently near the origin. In particular,

TomM = spafui(n,v), ..., uj+ire(n, v)}

spaf (&) m (¥ (1. v)). ..., E)u (¥ (1. v))}
@ spaf{ T, ¥ (11.0). ..., T(y.0) ¥ (k. 0)}
@ spar (¥ (0, v1), ..., Ty, ¥ (0, ve) }

Mmdq) - ¥(,v) S TP m* xV),

asrequired. O

The introduction of a slice mapping allows us to decompose the critical point
equation (1) into a system of four equations. Using property (SM2) of the slice mapping
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and setting¢ := 1% o ¥, we see that the poin (y, v) € M is a relative equilibrium with
generatok if and only if

(RED ijadj(n,v)=0,
(RE2 ijadj(n,v) =0,
(RE3) Du+H:(n,v) =0,
(RE4 DyHE(n,v)=0.

(7)

Remark 2.3. If symmetry is broken in a neighborhood of,, theng,,, - ¥(n,v) is
typically nontrivial. In this case, the first two conditions alone do not guarantee that the
rigid condition agj (n, v) =0 is satisfied. However, if (RE3) and (RE4) are satisfied, then
DH? (n, v) = 0; in particular, if¢ € g,,,, then (SM2) implies that there exi& € m* and

8v € V such thaty (¥ (1, v)) = T(y,»)¥ (81, $v) and hence

(adt I(w (1. v)). £) = —Dh* (¥ (0, v)) Eu (¥ (1, v))
= —DH?5(n,v)(8n, Sv) = 0.

(adj (. v), ¢)

Combining this with (RE1) and (REZ2) yields the rigid equilibrium conditiopja(d, v) =0.

Remark 2.4. Note that in order to split the critical point equation (1) into (7), only
property (SM2) of the slice mapping was utilized. As we shall see in the following
section, property (SM3) simplifies the analysis of Egs. (7). Equations (RE1) and (RE3)
are, by construction, nondegenerate in the sense that implicit solutions to these equations
always exist. Thus the bifurcation analysis is carried out only on the equations obtained by
substituting the solutions of (RE1) and (RE3) into (RE2) and (RE4).

3. Thereduced critical point equations

In this section we start with a relative equilibrium, with generatoré € g and
derive a minimal set of mappings and equations, called rdtkiced critical point
equations determining the relative equilibria in a neighborhoodmaf. We proceed in
three steps, using the Implicit Function Theorem and Lyapunov—Schmidt reduction (see
for instance [13]). In each step we indicate sufficient technical hypotheses to guarantee
that the step can be carried out for infinite-dimensional systems. We emphasize that the
construction of the reduced equations is not an ‘all or nothing’ procedure; if some of
the hypotheses are not satisfied, the relevant steps can be modified or omitted, yielding
analogous, although possibly less convenient, bifurcation equations.

Step 1. Using the notation introduced in Definition 2.1, I€: U x g, x m x ¢ — q* be
the mapping given by

Fl(r}7 v, a, ﬁ’ V) = lzlk a®+ﬂ+y1(n7 U)a
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with differential

DF1L(0)(81. v, 8a, 88, 8y) = i} (ay 45545, 1(0.0) +ad(Dj (0, 0)(87. 5v)))
= iz(ad), u +ad (Py,8n)).

Here we used property (SM3) of the slice mapping

Sincedy — i;‘(adgy w) is an isomorphism between and g*, we conclude that the
partial derivativeD, F1(0) is an isomorphism. Thus the Implicit Function Theorem implies
that there is a functiop : U1 C U X g,,, X m — g such that

Fl(’% v, Q, 18’ )’(77’ v, Q, 18)) = l;lk a®+a+ﬁ+y(n,v,aﬁ)j (7’}, U) = O

for all (, v, «, B) € U1. In other words, we have foundma* x V x g,,, x m-parameter
family of points that satisfy part (RE1) of the split critical point equations. Set

or1(n,v,a, B) :=E+a+B+yn v ap). (8)

Step 2. In this step we assume that the subspaceés reflexive, that is,m** ~ m.
(Since dimm < dim M, this hypothesis is nontrivial only if bot and G are infinite-
dimensional.) We now construcha® x V x g,,, -parameter family of points satisfying the
relative equilibrium equations (RE1) and (RE3) by applying the Implicit Function Theorem
to (RE3), solving for then component of the family of points constructed in Step 1.

Let Fo:lfy Cm* X V x gy, x m — m™ >~ m be the mapping defined b¥> (7, v,
a, B) := D+ F(n, v, w1(n, v, a, B)). Since we intend to solve the equatisp—= 0 for the
m parameter using the Implicit Function Theorem, we comgef»(0, 0, 0, 0). Given
arbitrarysg € m andén € m*,

dd
~ ¥ 2,01(0,0,0,58)

dr dsH (s3n,0) 1=0ls=0

(Dj(0,0)(81, 0), Dnw1(0)8B) = (P}, 81, Dmw1(0)3B)

— (81, Pu(3B + Dy (0)38)) = (51, 56)

(81, D F2(0)5B)

follows from property (SM3) of the slice map and the formula (8) for the generator
w1. Hence Dy, F2(0) is the identity map. The Implicit Function Theorem thus implies
that there is a functiom8:to C U x g,,, — m satisfying Fo(n, v, o, B(n, v, @)) =

D F(n, v, 01(n, v, a, B(n, v,a))) =0 for all (n, v, @) € Us. Set

w2(n, v, ) = wl(n, v, o, B(n, v, a)).

Step 3. We now treat the (RE4) component of the relative equilibrium equation. We use the
standard Lyapunov—Schmidt reduction procedure of bifurcation theory to partially solve
(RE4).
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Let £:V — V* denote the linear transformation satisfying
(Lv, w) := DyyH* (0, 0) (v, w) = D*HE (0, 0)((0, v), (0, w))

for all v andw € V. SetVp := kerL and choose closed subspadgsc V andV, Cc V*
such that

V=Vo® Vs and V*=rangel ® Va. (9)

If V is infinite dimensional, additional hypotheses are needed to guarantee the existence of
closed complementg; andV». For example, it suffices that is a Banach space antis
a Fredholm operator.
Let P: V* — V» denote the projection determined by the decomposition (9 ‘of
Define F3:m* x Vo x V1 x g,,, — range’ by

F3(1,v0, 1, @) := (I = P) Dy 2P0t (3 yg + vy).
Using the Implicit Function Theorem once more, we can solve the equayon vo,
v1, o) = 0 for vg. The identitiegI — P) £ = £ and Dy (0, 0) imply that Dy, F3(0) = L|y,.
L]y, is, by construction, an isomorphism &f onto rangeC and the Implicit Function

Theorem guarantees the existence of a neighborbgad (0, 0, 0) € m* x Vp x g, and
a local functiorwy : U3 — V1 such that

F3(1, vo, v1(n, vo, &), ) =0,

for any (n, vo, @) € U3.
Define thegenerator maps : Uz — g, p: Uz — m*, andB : Uz — V> by

(. vo, @) = w2(n, vo + v1(n, vo, @), @),

/0(77: vo, C() : [*m ad_’g‘(n’vo)a))j ((7]» vo + Ul(nv Vo, Ol)),

B(n, vo. &) := PDyHZ"0%) (i vg + v1(n, vo, @)).

In a sufficiently small neighborhooidz of the origin any solution(n, vo, «) of the
equations

{ (B1) p(n,vo, ) =0, (10)
(B2) B(n,vo,) =0

determines a relative equilibriug (n, vo + v1(n, vo, o)) with generatorz (5, vg, @). On
the other hand, any relative equilibrium sufficiently neam,. in the slice¥ (m* x V)
satisfiesm = ¥ (5, vo + v1(n, vo, a)) for some solutionn, vo, o) of (B1) and (B2); any
generato€ of m satisfiess — &(n, vo, @) € g;,,. Equations (B1) and (B2) will be usually
referred to as theigid residual equatiorand thebifurcation equationrespectively. Let
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R:m* x Vo X g, — m* x Vo be the product op and B, that is,

R:m* x Vo x gm, > m* x Vg
(1, vo, @) + (p(n, vo, @), B(, vo, @)).
We will refer to the equality
R(n,vg, ) =0 (11)

as thereduced critical point equations

Note that since the operatdr satisfies(Lv, w) = (Lw, v) for all v andw € V, the
spaces/p and V, can be naturally identified using the inner product witers a Hilbert
space.

Remark 3.1. Note that even though the critical point equations (1) determining the relative
equilibria in our situation can be naturally understood as a gradient equationMtien
a Riemannian Hilbert manifold, this analytic feature is not in general available for the
reduced version (11) of these equations.

The gradient character of (i9 preserved by the reduction procedure when the relative
equilibrium m, is a true equilibrium with total isotropy. In this casg,, = g; thus
m = q = {0} and the rigid residual equation (B1) is trivial. As we will now show, if
X(m.) =0, G,, =G, andV is a Hilbert space, then the bifurcation equation (B2) is a
gradient equation. Our analysis very closely follows the one introduced in [12].

If m =q = {0}, then any coordinate chayt:\/ € X — M such thaty(0) =m, is a
slice mapping atz., with V = X, and the critical point equations (RE1)—(RE4) collapse
to the single equatio®* (v) = 0. In this situation only the third step of the general
procedure, the Lyapunov—Schmidt reduction, is nontrivial.

We fix an inner produc{(-, -)) on V and denote bywH? (v) the usual gradient o
with respect to(-, -)), i.e.,

((V’HE (v), w)) = DH* (v)w

foranyw € V. If m, is a relative equilibrium with generatér the relative equilibria near
m, correspond to the zeroes of the mépV x g — V defined by

F(v,0) = VH T (v).

Let L:V — V be the mapping defined b(v) = Dy F (0, O)v. It can easily be verified
that

(L), w)) = D*HE (0) (v, w)
for anyv andw € V. Note that the mapping is a self-adjoint operator; hence if we set

Vo =kerL andV; =rangeL, thenV has the orthogonal decomposition= Vo @ V1. Let
P:V — Vp denote the canonical projection with respect to the spliting Vo & V1. Now,
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if we decompose € V asv = vg + v1, With vg € Vg andv € V1, and apply the Implicit
Function Theorem to the equation

(I—P)F(vo+v1,) =0,
we obtain a functions : Vo x g — Vi such that
IT— P)F(vo + v1(vo, ), a) =0. (12)
Thus, in this case, the bifurcation equation is
B(vg, @) = IP’F(UO + v1(vg, ), a) =0.
We now show that the map is the gradient of (vo, o) := HE T (vo + v1(vo, @)); that is,
B(vo, ) = Vyyg(vo, ).
Indeed, note that for any € Vg

((Vvpg(vo, ), w)) = DHS T (vo + v1(vo, @)) (w + Dy,yv1(vo, @)w)

((F(vo + v1(vo, @), oz), Pw + (I —P) Dy,va(vo, oz)w))
= ((IPF(UO + v1(vo, ), oc), w)) = ((B(vo, o), w)),

sincew € Vp =rang€eP, Dy,v1(vo, @)w € V1 =rang€l — IP), P is self-adjoint, and (12) is
satisfied.

3.1. The equivariance properties of the reduced critical point equations

The symmetries of the relevant equations play an important role the solution of a
bifurcation problem (see, for instance, [15]). We will see that if heaction onM is
proper, then the relative equilibrium equations (B1) and (B2) can be constructed so as to
be equivariant with respect to the induced actio@gf ¢ := G,,, N Ge onm* x Vo. Here
G¢ denotes the isotropy subgroup of the generatoy of the relative equilibriunm, € M
with respect to the adjoint action 6f on g.

An equivariant slice mapping a slice mapping : U/ Cc m* x V — M satisfying the
additional condition

(ESM) The subspace* of g* is Adg; E-invariant and the slice mapping: U/ C m* x
V — M is G, g-equivariant with respect to the coadjoint action(j, : onm*
and some action af,,, e onV.

Note that since the grou,, : is compact and fixeg0,0) € m* x V, the open
neighborhood/ of (0, 0) € m* x V in (ESM) can always be chosen to 6g,, ¢ -invariant.
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Proposition 3.2. If the group G acts properly onM and the coordinate charyy ;U C
X — M with ¥ (0) = m, is equivariant with respect to some action®j,, ¢ on X, then
the subspaces, q, V, and W can be taken to b&,,, ¢ invariant. For these choices, the
slice mapping constructed in Propositi@® is G, £ -equivariant.

Proof. First we show thaiG,,, ¢-invariant decompositiong = g,,, ® m @& q and X =

V @ W exist. Note that the isotropy subgro@h,, is compact, since the action 6fon M

is assumed to be proper; consequently the subg@hyp: is also compact. This guarantees
the existence of a Ag], .-invariantinner product op, which we can use to determine a
Adg,,, . -invariant decompositiop = g,,, ® m @ q of the Lie algebra.

The orthogonal complement gf, - m. in kerDJ(m.) with respect to &, ¢ -invariant
inner product is an invariant subspace. Hence the pre image with respect to the equivariant
map Toy of this orthogonal complement is@,,, ¢ -invariant subspace of; we choose
this subspace as the vector spatén Definition 2.1. The spac® can analogously be
chosen to be invariant under tlis,, ¢ action onX.

Given these choices of subspaces, the actiot gf: on M induces a well-defined
action onm™ x V via the slice map. Equivariance of the momentum map, the coordinate
chart, and the projectioB,, imply that the slice mag is equivariant with respect to this
action. O

Recall that the relative equilibrium equations were obtained using two consecutive
applications of the Implicit Function Theorem (Steps 1 and 2) followed by the Lyapunov—
Schmidt reduction procedure (Step 3). It is well known that if the Implicit Function
Theorem is applied to an equatidh= ¢ determined by an equivariant map and a
fixed pointc of the group action, then the resulting implicitly defined function is also
equivariant. In addition, if the Lyapunov—-Schmidt reduction procedure is applied to such
an equation using invariant subspaces, then the resulting functions and equations will be
equivariant. (See, e.g., [13,15] for precise statements and proofs of these results). Using
these fundamental results, we now show that, given appropriate choices of slice maps
and subspaces, the generator niijand the function®3 and p determining the reduced
relative equilibrium equations are equivariant with respect to the indGggd action on
m* XV X gp,.

Proposition 3.3. If the spacesn, q, V, andW are G,,, ¢ invariant and the slice mapping
is G, £ -€quivariant, then the maps, vy, B, p, and F are all G, ¢-equivariant.

Proof. It suffices to show that the functiorfg, F», andF3 given in Steps 1-3 ar€,, ¢-
equivariant. We first consider the mappifg: U x g,,, x m x ¢ — g* introduced in Step 1.
For arbitraryg € G, &

Fi(g- (0.0, B.7) = iE a8,y qgpig) (87187 V)
= iqaag, ¢ a4 pry) Adg-1] (. V)

= i;IkAdZ—l (ad{SJraJrﬂer) j(n, U))
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= Ady 1 (igad; o g4y (0. 0))
= g- Fl(nvvva7ﬁ7 J/)

Thus Fy is G, ¢-equivariant and, hence, the implicitly defined functignand w; are
alsoG,, e-equivariant. An analogous verification can be carried out for the magpiing
Step 2, allowing us to conclude that the functionis alsoG,,, ¢-equivariant.

To establish the invariance (respectively equivariance) of the spaces and maps
constructed in Step 3, we first note tilf is G, ¢-invariant, since the augmented
Hamiltoniank® is G¢-invariant and the slice map is G, £ -equivariant. Equivariance of
the mapF, and hence invariance of the subspaceskand range, follows immediately
from the invariance ofH*. The compactness of the grow,, : allows us to choose
Gn, e-invariant complement®’; and V, to kerF and rangé . (See, for instance, [15,
Proposition 2.1].) With these choices, the canonical projedti@md the functionFs are
equivariant. Consequently the functiony as well as the generator m&pand the reduced
relative equilibrium equations are equivariant, as required.

3.2. Treatment of the rigid residual equation

In this section we consider some situations in which the rigid residual map is either
trivial or can be greatly simplified by using an appropriate slice mapping. For exam@le, if
is Abelian, then the full rigid equation ?d(me) = 0 is trivial. Hence, the rigid residual
equation is obviously satisfied. df is not Abelian, but an appropriate invariance condition
is satisfied, then there is a slice m&pm* x V — M yielding a residual rigid equation
involving only the Lie bracket on the isotropy subalgepgalf g, is Abelian, this choice
of slice map yields solutions of the residual rigid equation. We will present a few cases in
which these helpful choices are possible.

Given a relative equilibriumn, with momentumu := J(m,), let O, C g* be the
coadjoint orbit throughe, with tangent space

1,0, ={adn | ¢ € g}
atu. We shall say that a subspage g is g, -invariantif (g, q] C g.

We now prove that, generically, the rigid equatjercan be reduced by an appropriate
choice of slice map to an equation gp.

Proposition 3.4. If the complemen to g, in g is g, -invariant, then given any slice map
v :U— M atm,, there exists a mag :U/ — q such that

(1) the map¥ :i{ U — M given by

@ (n,v) = exp(¢(n,v)) - ¥ (1, v) (13)

is also a slice map, _
(2) the associated generator maptakes values iny,,,
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(3) the pullback :=J o ¥ of the momentum map takes valuesin- q°,
(4) ¢(0,0)=0andD¢(0,0) =0.

If the original slice mapping i, ¢-equivariant, then? is equivariant.

Proof. We obtain the maw through yet another application of the Implicit Function
Theorem. Defin€ : m* x V x ¢ — q* by

C(n, v, ¢) =ig(I(exp(¢) - ¥ (n,v)) — ), (14)
with differential

DC(0)(én,8v, 5¢)

i£DI(me) (To,0% (31, 8v) + 8 (m.))
iq(Pron — ad, 1) = —igads, u

for arbitrarydn € m*, v € V, andé¢ € q. Here (SM3), equivariance of the momentum
map, and the identity; Py, = (Pm o iq)* = 0 have been used to simplify the expressions.
Sincen — ij ad, u is an isomorphism from to g*, the Implicit Function Theorem implies
that there is a neighborhodd of (0,0) in m* x V and a functionp:2/ — q such that
¢(0,0)=0, D¢(0,0) =0, andC(n, v, (7, v)) =0.

Using¢ :U Cc m* x V — g and (13), we see that the pullbackf the momentum map
satisfies

iy@d s ) =ij(ad 45 (10v) — 1)) =0

for all (n,v,a,B) € 1. Thus executing Step 1 of Section 3 using the modified slice
mapping¥ yields a mapping : Uy C m* x V x g,,, x m — ¢ satisfying

0= Fi(nv,a B 71,0 B))= i:(a¥+“+ﬂ+)7(n,v,a,ﬂ)j~(na v)
= i;(aqg(n,v,a,ﬁ)i(ns U))

for any (n,v,a, B) € Us. 7 = 0 clearly satisfies this equation; hence it is the unique
solution of the equatior¥; = 0 given by the Implicit Function Theorem. Thus Steps 2
and 3 yield the generator map

E(n,vo,@) =& +a + B, vo+ v1(1, vo, @), @) € g

Suppose now that the slice map satisfies the property (ESM). Note that for any
v, ) em* xV xqgandanyh € G, ¢ CGy

bk 0) = e 001 .1-) ~
hig(J(exp(@) - ¥ (n.v)) —p) =h-C(y.v.9).

Equivariance o implies thatp, and henc@”, are equivariant. O
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If the hypotheses of Proposition 3.4 are satisfied, the rigid residual equation involves
only elements ofy, andg};. Specifically, if we lef , ], denote the Lie bracket og), and
Ju M — gj, denote the momentum map associated to the actiati,0bn M, namely
Ju =iy, J, thenp satisfies

(o, vo, @), B) = (3u(¥ (1, vo + v1(n. v0, @))), [E (1, v0, @), B] ). (15)

for all B € m. In particular, ifg, is Abelian, thenp is identically zero. Thus we have
established the following corollary.

Corollary 3.5. Let m, be a relative equilibrium with momentum = J(m.). If g, is
Abelian and there exists g, -invariant complement tg,, in g, then there is a slice map
with respect to which the rigid residual mapis identically zero.

Another approach to the search for solutions of the rigid residual equation is to restrict
this search to fixed point subspaces corresponding to subgroups of the symmetry group of
p. More explicitly, suppose that the hypotheses of Proposition 3.4 are satisfied and that
we start with an equivariant slice map. In that case, Proposition 3.3 guarantees that
p is G, e-equivariant and satisfies (15). Equivariance implies that for any Lie subgroup
K C G, £, the mapp maps the set of fixed points & into the set of fixed points ok
in m*. Hence all the zeroes of the restriction

oK m*HK x VOK X g,{ie — mHk,
of p to (m")¥ x V£ x gk are also zeroes of, where the superscrigt denotes the
subspace oK -fixed points with respect to the relevant action. In other words, we can look
for the solutions of the rigid residual equation by searching the zeroes of its restrictions
to different sets ofK-fixed points, withK and arbitrary subgroup of,,, ¢ which, in
principle, should be easier, since the dimension of the system has been lowered without
introducing additional complexity into the equations.

If the restriction of the Lie bracket of the Lie algehlyato g{f is trivial, then the entire

subspacgm®)® x V& x gX consists of solutions of the rigid residual equation. Indeed,
forany (n, vo, @) € m*)X x Vf x gk | if we let

v= Ju(@ (n, vo + v1(7, vo, a))) and ¢=2Z(®, vo, ),
then
:0(77’ vo, (X) = <U, [§7 ']gu>-

The equivariance of andJ,, implies that; € gff andv e (gj;)’(. Also, sincem C g,,, we
have(m)X c (g,)X. Therefore, sincém*)X ~ (mX)*, for anyg € mX we have

(p(n, v0, @), &) = (v, ¢, €1gx) =0,
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due to the hypothesis on the Lie bracketgéﬁ The arbitrary character gfe mX implies
thatp(n, vo, @) =0.
Thus we have then proved the following

Proposition 3.6. Let m, be a relative equilibrium with momentum = J(m,.) and
generatolt € g. If there exists &, -invariant complementtg,, in g, then for any subgroup
K C Gu,.¢ for which the restriction of the Lie bracket of the Lie algelprato the set of
fixed pointhjl< is trivial, there is a slice maj@ with respect to which the entire subspace

mHX x Vi x gk consists of zeroes of the rigid residual equation

(See [39] for persistence results on nondegenerate Hamiltonian relative equilibria valid
under conditions of this sort.)

4. Persistencein Hamiltonian systemswith Abelian symmetries

In this section we focus on the relative equilibria of Hamiltonian systems for which
the symmetry groug is Abelian and theG action is proper. Lein, € M be a relative
equilibrium with generatof and momentunu = J(m,.). Since the adjoint and coadjoint
actions of an Abelian group are triviafy, = G and the rigid residual equation (B1) is
trivially satisfied. We also assume that the bifurcation equation (B2) is trivial, i.e mithat
is anondegenerate relative equilibriymwith

ker D%h¢ (Me) =g -Me =g - Me.

In this situation Steps 1 through 3 in Section 3 guarantee the existencendixag,y,, -
parameter family of relative equilibrigersistingfrom m,., whose dimension and structure
we now study. We use the woimkrsistenceas opposed to the worifurcation given

that the latter is customarily used to indicate a qualitative change in the family of relative
equilibria as a given parameter is varied. This is analytically reflected in the need for
a nontrivial Lyapunov—Schmidt reduction procedure in order to write the bifurcation
equations. We shall see that in the case at hand no such tool will be necessary.

In this section we will use a very special slice mapping based on the Marle—Guillemin—
Sternberg normal form [16,17,28] (we will refer to it as thi&S-normal forn) that we
briefly describe. The following exposition includes without proof the details of the MGS-
normal form that will be needed in our discussion. For additional information the reader
should consult the above mentioned original papers or [33,35,39].

We start by introducing the main ingredients of the MGS construction. Even though we
are concerned here only with the Abelian case, we present the general definition. First, the
properness of thé-action implies that the isotropy subgroGp,, is compact. Second, the
vector space/,, := (g-m.)*/((g-me)*N(g-m.)) = (kerDI(m.))/(g, - m.) is called the
symplectic normal spacéere(g-m.)® denotes the symplectic orthogonal complementto
g-m..) Vi, is a symplectic vector space with the symplectic normal fesf), defined by

wv,, (v], [w]) == o (me) (v, w)
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for any v and w € kerDJ(m.). The mapping(s, [v]) + [k - v], with » € G,,, and
[v] € Vi, defines a canonical action of the Lie groGp,, on (V,,,, wy,, ), whereg - u
denotes the tangent lift of th@-action onT M, forg e G andu e TM.

For simplicity of notation, we shall s&f = G,,,, N = V,,,, and drop the brackefs]
indicating the equivalence classesih simply writing v € N for the remainder of the
section. The canonicadl -action onN is linear by construction and globally Hamiltonian
with momentum magdy : N — b* given by

(v @), ) = 3on (nv (), v),

for arbitraryn € b, andv € N. Hereny denotes the infinitesimal generator oh
associated to the algebra element b.

The MGS-normal form is based on the construction of a model spafoe M, with
symplectic structurey, that we introduce in the following proposition.

Proposition 4.1. Letm, € M andu = J(m.). Let(N, wy) be the symplectic normal space
atm,. Consider the inclusions* C g}, C g* relative to anAdy-invariant inner product
on g. Then the manifold

Y: =G xyg (m* xN)

can be endowed with a symplectic structurg with respect to which the lefF-action
g - [h,n,v] =[gh,n,v] onY is globally Hamiltonian with momentum mdp : Y — g*
given by

Iy (Ig. o, v]) =Ad i (1 + p + In (). (16)
Theorem 4.2 (Marle—Guillemin—Sternberg normal fornfjor anym, € M, the manifold
Y:=G xg (m* xN)

introduced in Propositiord.1 is a Hamiltonian G-space and there are5-invariant
neighborhood#/ of m,. in M, U’ of [¢, 0, 0] in Y, and an equivariant symplectomorphism
¢:U — U’ satisfyingg (m.) =[e, 0,0] andJy o ¢ = J.

Since we intend to prove general statements about relative equilibria of Hamiltonian
systems with Abelian symmetries, the previous theorem allows us to reduce the problem
to the study of systems of the for(W, wy). Indeed, we will assume that the MGS-normal
form is constructed around the relative equilibrizm represented bye, 0, 0] in “MGS
coordinates.” It can be easily shown that the map given by

U'm*xN —>Y
(m,v) = [e,n,v] a7)
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is a slice mapping at the poift, 0, O] for DhS,, Wherehi is the representation @f given
by the MGS-normal form.

Before stating the following theorem, we recall from elementary differential geometry
the basic notion of theank of a surfaceiven in parametric form. Let: U c R" — R be
a parameterization of a surfagén R™. Given a value: € R" of the parameter, the rank of
the surfaceS, () at the pointg(x) € R™ is the rank of the Jacobian of the functigrat .
If this rank is constant, the Fibration Theorem [2, Theorem 3.5.18] guarantee$ithat
submanifold ofR™ and its rank coincides with the dimensionés a manifold on its own.

Theorem 4.3. Letm, € M be a hondegenerate relative equilibrium with generdtar g.
SetH := G, andp = J(m,). Then there is a surfacg of relative equilibria throughn,
that can be locally expressed as

S={[g.n.v(mn. )] €Y |geG, nem*, ach},

using the MGS normal forfi constructed around the orbdt - m,. Herev: m* x h — N is
a smooth function such that0, 0) = 0 andrank Dv(n, «)) = dimH — dim Hy(; o). The
rank, rankSie » v(y,0)], Of the surfaces at the relative equilibriumg, n, v(n, )] equals

rankSig, n.v(p.0)] = 2(dimG —dimH) 4+ (dimH — dim Hy ;. o). (18)

Proof. The surfaces of relative equilibria is constructed in Steps 1 through 3 of Section 3,
taking as slice mapping the m&p(n, v) = [e, n, v] constructed with the help of the MGS-
normal form. Indeed, since the nondegeneraay oand the Abelian character 6f imply

that (B1) and (B2) are trivially satisfied, there is a neighboridad m* x h of the point
(0,0) and functionsv:U{ — N and & :U — g such that for any(n, «) € U, the point
le,n,v(n,a)] € Y >~ M is a relative equilibrium of the syste, w, h) with generator

E (n,«) € g. At the same time, since the Lie grogpis Abelian and the Hamiltonian flow

F; associated td: is G-equivariant, it is easy to verify that if the poifg, n, v(n, o)]

is a relative equilibrium with generataE (n, ) € g then, for anyg € G, the point
[g,n, v(n, ®)] is also a relative equilibrium with the same generator. In order to prove (18),
we computeDv(n, @) by implicit differentiation of the equatio#s(n, v(n, @), o) =0
defining the functiorv in Step 3. Note that in this case the spaggis trivial and we
have dropped the subscript fram. Note thatg is trivial in the Abelian case and hence

w2(n, v, @) =w1(n, v, 0, B(n, v, @) =& +a + B(n, v, ).

Foru € N, for arbitrary$a € b, if we setoa; = o + ¢S, we have

0 = (Dn F3(n, v(n, @), @) (Dv(n, @) (0, 8)), u)
d
- _ Etar B(n,v(n,00),01)
= 5 PH (n, v(n, @) (O, u)‘tzo
= D2H$+a+ﬁ("’”(’7’a)’°‘)(n, v(n,@))((0, Du(n, @)(0, 8a)), (O, u))

—(DJN(n,ot)u,(Soz). (19)
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The last equality follows from the identity
imvy=p+n+inQ),
which implies that
(Dj(m,v)(0,u), 8 + 88) = (DIn (v)u, S + 8B) = (DI (v)u, Scx).

By hypothesis, the quadratic forly y ¢ (0, 0) is nondegenerate; therefore, since non-
degeneracy is an open conditiaby y HE T HBM.O (4 v(n, a)) is nondegenerate for any
(n, o) € m* x b sufficiently close ta0, 0). Hence the rank oDy v(n, @) equals the rank
of DIy (v(n,«)) ata point(n, ) € m* x b sufficiently close tq0, 0). Thus

rank( DIy (v(n, @))) = dim[(hy(p,0))2" "]
dimH —dimHy(.0), (20)

rank(D;,v(n, Ol))

as required. In the previous expression the synibgl, »))2™"") denotes the annihilator
of by« IN h*, as opposed tg*.
The expression (18) for the rank of the surfacat a relative equilibriunfg, n, v(n, )]
is a straightforward consequence of the formula (20) for the rarfaf(n, ). The rank
of S at[g, n, v(n, a)] is the rank of the parameterization
S:Gxm*xh—> Gxm*"xN—>Gxyg(m*xN)

(g.n.a) — (g.n.v(n. ) [g. 0, v(n, )]
of the surfaces. The mapS has rank
rank(7T(g.o.nS) = rankSig.n.v(n.e)) = diMG + dimm* + rank( Dv(«)) — dim H
= 2(dimG —dimH) +dimH — dim Hy;,«),
at[g, n, v(n, @)], as required. O
As a corollary to the previous theorem, we can formulate a generalization of a result due
to Lerman and Singer [21], originally stated for toral actions, to proper actions of Abelian

Lie groups. This result has already been presented in [33].

Corollary 4.4. Under the hypotheses of Theorem 4.3, there is a symplectic magifofd
relative equilibria of satisfyingm, € X and

dimX =2(dimG — dimH).
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Proof. The manifold X is the submanifold of the surfacg obtained by setting the
parametet € h equal to zero; in other words

=|{[g.n.v(n,0] €Y |geG, nem*]. (21)

The submanifoldX is a smooth manifold, since (18) implies that it has constant rank
2(dimG — dim H); that is, the map

T:Gxm* > Gxm*xN—Gxg(m*xN)
g, + (g 1.v®.0) [g.n.v(n,0)]
with image X' is a local constant rank map arouisel 0) € G x m* with rank equal
to 2(dimG — dim H), which implies that the surfac® is locally a manifold through
the relative equilibriumm,, of dimension 2dimG — dimH). (See, for instance, [2,
Theorem 3.5.18].)

The symplectic nature oF can be verified in a straightforward manner. Indeed, we
will check that ifi: X < Y is the natural inclusion then the paiE, wy), with wy =
i*wy, iIs a symplectic submanifold afY, wy). Let7:G x m* x N - G xg (m* x N)
be the canonical projection. Note that every vectofTjp , ,;,07% can be written as
Tig.n,v(n.0n0T (TeLg - £, 80, Dnrv(n, 0) - 8), for some¢ € g andén € m*. The two-form

wy is clearly closed. In order to prove that it is nondegenerate, let us suppose that the
VectorT (g . v(y,0)T(TeLg - £, 81, Dm=v(n, 0) - 81') is such that

0 = wx([g, n, v, 0])(Tg.n.vm.007 (Te L&, 81, Dm+v(n, 0)8n),
TignvmonT (TeLgt’. 80, Dev(n. 0)87')) - (22)
for every¢’ € g andsn’ € m*. We will show that this implies that
T(g,n.,v(,0)T (Teng, 81, Dm+v(n, 0)877) =0.
Usingwy = i*wy and the explicit expression of the symplectic foém associated to the

MGS normal form (see the previously quoted original papers, as well as [33,34,39]), we
can write (22) in the form

0 = (80 + DIy (v(n, 0))(Dm=v(n, 0)87'), ¢)
— {80+ DIy (v(n, 0))(Dm=v(n, 0)81),¢’)
+ (,()N (Dm*v(n’ 0)577’ Dm*“(n’ 0)877/)

foranyén’ e m* and¢’ € g. If we fix 8" =0 and let;’ be arbitrary, we obtain

on + DJN(v(n, 0)) . (Dm*v(n, 0 - 577) =0.
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Sincedn e m*, DIy (v(n, 0)) - (Dywxv(n, 0) - 8n) € h*, andm* N h* = {0}, we have
8n=DJIn(v(n,0)) - (Dm+v(n,0) - 8n) =0. (23)

If we now fix ¢’ = 0 and letsn’ be arbitrary, we obtaig € §, which, together with (23),
guarantees thall, ; v(y,0)7 (TeLg ¢, 81, Dv(n, 0)6n) =0, as required. O

In the remainder of this section we will show that the persistence phenomena described
by Theorem 4.3 and Corollary 4.4 preserve stability. More specifically, we will show that
if the relative equilibriunmm, is stable, then the entire local symplectic manifaldgiven
by Corollary 4.4 consists of stable relative equilibria. First, we recall the definition of
nonlinear stability of a relative equilibrium:

Definition 4.5. Let G’ be a subgroup ofi. A relative equilibriunmm, € M is calledG’-sta
ble, or stable modulds’, if for any G’-invariant open neighborhodd of the orbitG’ - m.,
there is an open neighborhobddcC V of m,, such that ifF; is the flow of the Hamiltonian
vector fieldX, andu € U, thenF; (u) € V for all t > 0.

Before recalling the stability result to be used here, we introduce the following notation.
Suppose that we fix a splitting gfas in (2). If§ = &1 + &, with &1 € g,,, andéz e m, is
a generator of the relative equilibrium,, then the unigque elemegt € m is called the
orthogonal generatoof m, with respect to the splitting (2).

We now state the following theorem whose proof can be found in [21] or in [34].

Theorem 4.6. Let (M, {-,-}, h) be a Poisson system with a symmetry given by the Lie
group G acting properly onM in a globally Hamiltonian fashion, with associated
equivariant momentum map: M — g*. Assume that the Hamiltonialhe C*°(M) is
G-invariant. Letm, € M be a relative equilibrium such that = J(m.), g* admits

an Ad*g;ﬂ-invariant inner product,H := Gp,, and& € Lie(Ng,(H)) is its orthogonal
generator, relative to a giveAdy-invariant splitting. Leth® denote the scalar function

hE (m) == h(m) — (J(m), ). If the quadratic formD2h% (m.)|wxw is definite for some
(and hence for anysubspacéV such that

kerDI(m.) =W @ g, - me,

thenm, is a G ,-stable relative equilibrium. [8imW = 0O, thenm, is always aG ,-stable
relative equilibrium. The quadratic form2h% (m.)|w~w Will be called thestability form
of the relative equilibriunm,.

A relative equilibrium satisfying the hypotheses of Theorem 4.6 is said forbgally
stable Note that in the Abelian case all the adjoint invariance requirements in the statement
of the previous theorem are trivially satisfied. We now state our stability persistence result.
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Proposition 4.7. Under the conditions of Corollaryt.4, suppose that the relative
equilibrium m, is formally (and consequently nonlineajlystable that is, it has an
orthogonal generatof € m with respect to the splitting?2) such that the quadratic form

D?h® (me)lwxw
is definite for some¢and hence for anysubspacéV such that
kerDJI(m,) =W @ g - m,,

then the symplectic manifol® of relative equilibria passing through, can be chosen
(by taking, if necessary, a sufficiently small neighborhoos ofn the submanifold~ of
Corollary 4.4) to consist exclusively of nonlinearly stable relative equilibria.

Proof. Recall that the symplectic manifold consists of points of the fornjg, n,
v(n,0)] € Y, with n € m* sufficiently close to 0, which are relative equilibria with
generatok + 8(n, 0). For simplicity of notation, we will write» = v(n, 0) andg = B(n, 0)
for the remainder of the proof. Sinéec m is by hypothesis an orthogonal generator with
respect to the splitting (2) angle m, the generatof + 8 is also an orthogonal generator
for the relative equilibriunig, n, v] € Y. Hence, in order to prove the Proposition it suffices
to show that the quadratic form

DZhE—HS ([g’ > v]) |W[g,n»v]><W[g,n»v] ’
is definite for some subspad®, , . such that keDJ([g, 7, v]) = Wig 5,01 ® Tig,n.v1(G -
[g, n, v]). Using the expression of the momentum map in the MGS-coordinates described
in Proposition 4.1, it is easy to verify that

kerDJ([g, m, U]) = (g -[g. m, U]) @ T[e,r/,v]q)g(T(n,v)lp({o} X kerDJN(v))),

whered, denotes th&-action in MGS coordinates (see Proposition 4.1)&nid the slice
mapping introduced in (17). This identity singles out the spAeg, 1P, (T(;;,» ¥ ({0} x
kerDJy (v))) as a choice foW,, , 1. We are now in position to study the definiteness of
the stability form of the relative equilibriurig, 1, v], using asW,,, , the space we just
mentioned. Indeed,

D2pE+P ([g, n, v]) | Wig.no1 X Wig.n0]

— D2pE+B
=D ([g’77’U])‘(T[L,V,M,]<I>g(T(,,,U)ll/({O}xkerD.JN(v))))x(same

= Dz(hgﬂs ° q)g)([e’ n, v])|(T(,?,v)q/({O}xkerDJN(u)))x(same

_ n29/E+B
=D"H (77’v)|({0}><kerDJN(v))><(same'

The formal stability ofm, implies that the quadratic fornDyy (0, 0) is definite,
therefore, since definiteness is an open condition, for aeym* close enough to O,
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DyNvHETP (5, v) is also definite. Since kddJy (v) is a subset ofV, the definiteness of
the stability form of relative equilibriunfig, n, v] is guaranteed for small enoughe m*,
asrequired. O

5. Bifurcation of relative equilibria with maximal isotropy

As in the previous section, we assume tiatcts properly onM/. However, we now
assume that the relative equilibrium is degenerate; that is, there is a generéaterg and
a nontrivial vector subspadé c T,,, M for which

kerD2h® (m,) = g, - m. ® Vo. (24)

This hypothesis implies that the Lyapunov—Schmidt reduction used in the construction
of the reduced critical point equations will be nontrivial and there will be the possibility
of genuine bifurcation. In this section we will focus on the study of the bifurcation
equation (B2); that is, we will assume that the rigid residual equation is satisfied and
therefore the relative equilibria near, correspond to the zeroes of (B2).

In the framework of general dynamical systems, the bifurcation of relative equilibria
with isotropy groupk, out of a degenerate (i.e., nonhyperbolic) isolated equilibrium, is
generi€ if K is maximal and satisfies an additional property, e.g., has an odd-dimensional
fixed-point subspace in the spa®g on which the bifurcation equation is defined, or
has an even dimensional fixed-point subspace together with a nontviattion. The
famous Equivariant Branching Lemma (see, e.g., [15]) belongs to the former case, while
the latter appears in a work of Melbourne (see [8,30]). We shall see that both results
have a counterpart in the symmetric Hamiltonian case, although being Hamiltonian is a
nongeneric property from the general dynamical systems point of view. When searching
for relative equilibria, the generatax € g) or momentum# € g*) serves as a bifurcation
parameter, in addition to any physical control parameters present in system. Due to
the “rigidity” of these geometric “parameters,” care must be taken when adapting the
bifurcation theorems to relative equilibria of Hamiltonian systems. As a final preliminary
remark, we point out the fact that our theorems will be stated for bifurcation from a general
relative equilibrium, not just from a pure (isolated) equilibrium. In the latter case, the
gradient character of the bifurcation equation (see Remark 3.1) simplifies the arguments
(see Remark 5.5).

5.1. A Hamiltonian equivariant branching lemma
In the situation described above, ket € M be a relative equilibrium satisfying the

degeneracy hypothesis (24). As we saw in Proposition 3.3, the bifurcation equation (B2)
can be constructed so as to bg,, ¢ -equivariant, which implies that for any subgroup

2 Loosely speaking, a property of a system is generic if it is true unless additional constraints are added to the
system (see [15]).
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K C Gp, £, B can be restricted to th& -fixed point subspaces in its domain and range;
hence we can find solutions &f by finding the solutions of

BK .= Bl(m*)KxVong,’,fe S(m*) K x VOK X g,lfle — VZK.
Assume now thatk C G, ¢ is a maximal isotropy subgroup of th&,, :-action on
Vo and, moreover, that di(m’oK) = 1. Under this hypothesis we will look for pairs

(n,vo) € "X x Vf satisfying
BX(n,v0,0)=0. (25)

Note that dinqv({f) =1 implies that (see, for instance, [4])
— . d},
L:=Ng,, . (K)/K ~ {Zz‘

Recall thatZ acts naturally oim*)X and onv, and that3X is L-equivariant. Depending
on the character of thé-action, the first terms in the Taylor expansion of (25) can be
written as

K-n+vict = if L~ {ld},

BX (1, v0,0) °

77’ vO’ = .

UO(K'n—i-UgC—i-“'):O if L~7Zp,

for some vectorr € (m*)X and some constant that are generically nonzero. These
expressions allow us to solve generically in both instangésterms of the other variables
via the Implicit Function Theorem, giving us saddle-node type branches-ifld} and a
pitchfork bifurcation if L ~ Z, (see [15] for arguments of this sort). More explicitly, we
have proved the following result.

Theorem 5.1 (Equivariant Branching Lemmal.et m, € M be a relative equilibrium of
the Hamiltonian systergM, w, h, G, J: M — g*), where the Lie grou acts properly on
the manifoldM . Suppose that there is a generatoe g and a nontrivial vector subspace
Vo C T,», M for which

ker D?h (me) = g, - me @ Vo.
Then, generically, for any subgroup C G: N G,,, for which dim(VOK) =1 and the rigid
residual equation is satisfied qm*)X x VOK x {0}, a branch of relative equilibria with
isotropy subgroupk” bifurcates fromm,. If Ng,, .(K)/K = {ld}, the bifurcation is a

saddle-nodeif Ng,,, . (K)/K =~ 7, itis a pitchfork.

We will illustrate this result with an example in the following section.
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5.2. Bifurcation with maximal isotropy of complex type

In what follows we will use a strategy similar to the one introduced by Melbourne [30]in
the study of general equivariant dynamical systems to drop the hypothesis on the dimension
of Vc{{ in the Equivariant Branching Lemma. Our setup will be the same as in Theorem 5.1,
but in this case we will be looking at maximal complex isotropy subgrokipsf the
Gn, £-action onVy, that is, maximal isotropy subgrou@sfor which

Sl

L:=Ng,, .(K) K:{
Gnes VK=V 61 7,

(26)

Note that in such case%’( has even dimension.

As in the previous section, we will use the equivariance properties of the bifurcation
equation in order to restrict the search for its solutions to khéixed space(m*)X x
VE x gk . Moreover, we will consider only solutions of the for(@, vo, o) € (m*)¥ x
V§ x p, wherep is some Ad,G’M (k)-invariant complement toin Lie(Ng,,, . (K)). Note
that (26) implies thap ~ [~ R.

We now show that the adjoint action &g, .(K) on p is trivial. The canonical
projectionr : Ng,,, . (K) — L is a group homomorphism; hence the commutativity.of
implies that

n(ghg™) =n(@n(n(g) = n(h)

foranyg, h € Ng,, . (K). In particular,

T.7 - (Adga) = % 7 (gexpita)g ™) = % mexpita) =Tor -«
t=0 t=0

for any ¢ € Ng,,, .(K) and « € Lie(Ng,, . (K)), which implies that Ad — id maps
Lie(Ng,,  (K)) into kenT,z) = ¢. Sincep Nt = {0} andp is AdNGm)E(K)-invariant, it
follows that(Ad, — id)|, =0 for all g € Ng,,, . (K), i.e., that the adjoint action omis
trivial.

Theorem 52. Let m, € M be a relative equilibrium of the Hamiltonian system
M,w,h,G,J:M — g*), where the Lie groupG acts properly on the manifold/.
Suppose that there is a generatbre g and a nontrivial vector subspacey C 7,,, M
for which

kerD2h® (m,) = g, - m. ® Vo.

Suppose that the fixed point sz}f”"’f = {0}. Then for each maximal complex isotropy
subgroupk of theG,,, ¢-action onVg such that

[Lie(NG,, . (K)), g,]=0
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and each AQGM E(K)—invariant complemenp to ¢t in Lie(Ng,, (K)) such that the

rigid residual equationo (0, vo, @) = 0 is satisfied for allvg € VOK anda € p, there are
generically at Ieast% dim VOK (respectively%ldim VOK) branches of relative equilibria
bifurcating fromm, if Ng,,, . (K)/K ~ S* (respectivelys* x Z>).

Proof. Let B:Us C m* x Vg x g, — V2 be the bifurcation equation corresponding to
the reduced critical point equations constructed aroupdsing the MGS-slice mapping
introduced in (17). The equivariance of this slice mapping guaranteeBthaG,,, -
equivariant; hence any solutions of

BK .— Bl(m*)KxVOKXgﬁe :(m*)K X VOK X g,,lie — VZK

are solutions ob.
As we stated above, we will restrict our search to solutions in th¢0$et VOK X P,
wherep is some Ady; E(K)-invariant complement td. Identify Vo and V> using an

invariant inner producy , )) and defineB X : V& x p — V& through the relations

<<§K(vo, a), u)) = (B K0, vo, @), u) =DyH" (0, vo + v1(0, vp, a))u| (27)

n=_E&(0,vp,x)

for any vo, u € V§ anda € p. The equivariance properties 8f and the triviality of the
action onp imply that B X satisfies the following equivariance condition:

BX(g-vo,0)=g-BX(vo,) forallgeNg,,,(K). (28)
Note that, as a corollary to this property, we have that
BX©0,0)=0 foralla, (29)

since for allg € Ng,, . (K), g - BX(0,0) = BX(0,a) and, consequently, the isotropy
subgroup ofEK(O, «) contains Ng,, .(K) and hence it strictly contain&k. The
maximality of K as an isotropy subgroup implies that the isotropy subgro@’&(O, a)
is G, .£. However, by hypothesiB’OG"’e'E = {0}; henceB X (0, @) = 0, as claimed.

We find the solution branches by first finding an open Ba(0) about the origin inv({f
and a function : B, (0) — p satisfying

(B (v0. (v0)). vo)) = O,

then using§K andu to define a family of vector fields on the unit sphereftﬁ. Standard
topological arguments show that these vector fields have the requisite number of equilibria,
which correspond to solutions of the original equations.

As the first step in finding the functian, we compute the Taylor expansionﬂf". As
a result of the Lyapunov—Schmidt reduction and of (29), we can write

BX (v, @) = L(@)vo + g(vo, @),
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whereL(«) is a linear operator such tha{0) = 0, andg(vo, «) is such thak (0, «) =0,
Dy,8(0, ) =0 for all «. Moreover, a lengthy but straightforward computation shows that

L(e) = —PDynj“(0,0) + L1(a),

wherej* = (j (-, -), ) andL1(0) = L} (0) = 0. We now show that if we identifyp and V>
by means of an invariant inner product and idenpifyith R, then there exists a constant
k € N* such that

—PDnyj% (0, 0)|V0K = OékHVOK, (30)
whereHVOK denotes the identity oerK. Indeed, note that

i%0,v) =(3(¥(0,v)), &) = (u, ) + I ()
and hence
Dynj®(0,0)(v, w) = DynIF (0)(v, w) = wy (an (v), w) (31)

foranyv,we N

We now restrict our attention to elementsw € NX . Recall that sinc&V is symplectic,
the vector subspacd X is symplectic with a canonical action; hence for any e [
andv € N there is an infinitesimally symplectic transformatidg such thatay (v) =
Ayv. The equivariant version of the Williamson normal form due to Melbourne and
Dellnitz [31], implies the existence of a basis in whigh andw,x admit simultaneous
matrix representations consisting of three diagonal blocks corresponding to the subspaces
ERr, Ec, and E of NX on which L acts in a real, complex, and quaternionic fashion,
respectively. Moreover, in this basis the restrictiongigfandwyx to E¢ take the form:

Nk |Ee = +il and AglEc = +iadiagks, ..., kq)

for some natural numbers, ..., k;. The signs in these two equalities are consistent, that

is, they are either both positive or both negative (in all that follows we will focus only on
the positive case). These expressions follow directly from the tables in [31] and the absence
of nilpotent parts inA,, which is dictated by the requirement thét be the zero matrix
whena = 0. By hypothesis is a maximal isotropy subgroup of i, :-action onVg

for which V§ c Ec. Moreover, since thé-action onV \ {0} is free, there existe € N*

such that

AO"VOK = ikOl]IVOK .
Using this expression in (31), we obtain (30) and hence

BX (v, @) = akvo + Li(a)vo + g(vo, @),
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whereL1(«) is of higher order thatw| andg (vg, @) is of higher order thafivg||. It follows
that in the equation

0= (vo, BX (vo, ) = aklvol1? + (vo. L1(@)vo + g(vo, )

we can factor oufjvg||? and then apply the Implicit Function Theorem to obtain a unique
functione : B, (0) — p, for somer > 0, near the solutiox0, 0).

Using this function we can define a one parameter familf-efquivariant vector fields
X, on§2—1py

Xe(u) = BX (eu, a(e)u).

The zeroes of these vector fields correspond to solutions of the bifurcation equation. Since
L acts freely o1, x, determinesNa smooth vector fieXd on Sz”*l/L; the Poincaré—
Hopf theorem implies that genericallj, has at least

n—1\ __ H ~ ¢l
X(SZ"_l/L) _ X ((CIP’ 71) =n I.f L~>~S,
x(CP"YZy)=n/2 fL~S'xZ

equilibria.

The following lemma proves thaf, («) is always orthogonal to the tangent space
of the L-orbit of u, i.e., (Xe(u), {gz-1(u)) = 0 for anyu $2-1 and¢ e I. Hence the
equilibria of X, correspond to orbits of equilibria df, which in turn determine orbits of
solutions of the bifurcation equation.

Lemma5.3. If [Lie(Ng,,, . (K)). g 1=0, then(Xc (1), t52:-1(u)) = O for anyu € s>~
and¢ €1.

Proof. We first show tha X (v, «) is orthogonal td - vg for anyvg € v ande € p.
Givena € p, defineH, : V£ — R andj, : V§ — g* by

He (v0) = H(vo+ v1(0,vo, @) and ju(vo) =j(vo + v1(0, vo, @)).

The equivariance o, and triviality of the action orp imply thatH, is G, ¢-invariant
andj is G, £-equivariant.

We can choose the space annihilatedibyas a complementty to Vo in V. (If V2 is
identified with Vg using an inner product, this choice f&f is the orthogonal complement
to Vo in V.) In this case,

DNHE(O,vo,a) (O, vo + v1(0, vo, a)) -v1=0

for anyvg € Vo, v1 € V1, anda € g, . Hence, giveng, u € V({‘, aep,ands € gm, & C Gu,
if we setn = Z(0, vg, @) andv = vg + v1(vg, @), then
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(§K(vo, a), Lvy(vo))
= DnH"(0, v)¢vp(v0) = DnH" (0, v)((id + Dyov1(0, vo, 0)) £ (v0))

= D(Ha — i) (0) vy (v0) = (adtja (vo), n) = (adfIn (v), n).

In particular, if ¢ € Lie(Ng,, . (K)) and [Lie(Ng,, . (K)), gk 1=0, then(B ¥ (vo, o),

¢vp(v0)) =0, sincedy (v) € (g, )¥.
To complete the proof, note that the linearity of the action implies that

(Xé (u), §Sz1—1(u)) = (EK(eu, a(eu)), §Szn—1(u)>

1~
= (B (ew, alew), tvpew)=0. D

Remark 5.4. Note that Theorem 5.2 provides a (generic) lower bound for the number
of branches of critical points bifurcating from,. In fact, if m, has nontrivial isotropy,

then in many situations a sheet of critical points bifurcates fromrather than a finite
number of one dimensional branches. An example of this phenomenon is given in Sec-
tion 6. A continuous curve of bifurcation points with nontrivial isotropy appears in many
other symmetric Hamiltonian systems, including the Lagrange top and the Riemann ellip-
soids. (See, for example, [24—-27].) In [24] it is shown that for Lagrangian systemsith
symmetry this phenomenon occurs under conditions that are generic within that class of
systems.

Remark 5.5. There are two cases in which Theorem 5.2 can be applied in a particularly
straightforward manner. First, suppose that the relative equilibrignis such that its
momentum valug. = J(m,.) has an Abelian isotropy subgro@,. In such situation we
automatically have thgtie(Ng,,, . (K)), g,[f,e] =0 for anyK C G, C G, and also,
using the techniques introduced in Section 3.2 (see especially Corollary 3.5), the condition
on the rigid residual equation can be easily dealt with.

Another case of interest is when, is actually an equilibrium with isotropy equal
to the entire symmetry groug, i.e., the G-orbit of m, is m, itself. Note that in that
casem = q = {0} and therefore the rigid residual equation is trivial. Also, the condition
[Lie(Ng,, . (K)), inie] = 0 in the statement of the theorem is not necessary in that case
since the bifurcation equation is variational (see Remark 3.1) and therefore the associated
vector field is orthogonal to thé-orbits, anda fortiori to the Ng,,, . (K))-orbits in V({(.
It is interesting to note that in this case, the Equivariant Branching Lemma stated in
Theorem 5.1 is not applicable, because the paramégenow missing.

6. An example from wave resonancein mechanical systems

In order to illustrate our method we consider a Hamiltonian syste®ifwhich we
identify with C*), with Hamiltonian functiork and symplectic matrix fa. We will assume
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thath is invariant under the canonical action of the to€is= S x S* on (C4, il -4) defined
as follows:

Ry y(21,22,23,24) = (z1ei¢, 226V, 23679, Z462iw),
(@, v) e ST x St (21,22, 23,24) € CL.

We assume in addition that the linearized Hamiltonian vector field has two pairs of
imaginary eigenvalues, namelyiw in the (z1, z2) subspace, and-2iw in the (z3, z4)
subspace. This type of 12 resonance occurs in a variety of mechanical systems,
such as in capillary-gravity surface waves (see [6] and references therein). There can
be additional symmetries in the system, such as reflection symmetry in space (which
would act for example by permutation af with zo and of zz with z4) and time
reversibility (transforming complex amplitudes to their conjugates). However, assuming
these symmetries would not qualitatively affect the subsequent analysis and we shall not
consider them in the sequel. In most applications one ofthievariance comes from the
transformation of the system into normal form, we refer to [46] and [45] for an extensive
bibliography about Hamiltonian normal form theory.

Our goal is the identification of the relative equilibria of tfeequivariant Hamiltonian
vector field induced by:. Computations similar to those of [5] show that the general form
of a G-invariant, real smooth Hamiltonianis

h=h(X1, X2, X3, X4, U1, Uz, V1, V2),

where
- 1 5 =2
Xj=z;zj, Ui = E(Zka-i-Z + sz1<+2),
i
2= =2
Vi=—2 (Zka+2 - sz1<+2), k=12

2

Moreover, the Lie algebra~ R? of G acts onC? by

(61, &2) - (21, 22, 23, 24) > (18121, 16222, 28123, 2i£224). (32)

The associated momentum mapan be written as

|Z1|2+2|zs|2>

(33)
2212 + 2|z4/?

J(z1, 22,23, 24) = (

We now write the relative equilibrium equatioPsé (m) = 0, in complex coordinates. We
seté = (§1,62) and

oh oh oh
ajz 3 k= > Ck=—"-
0X UL Ve
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D(h—(3,8))(z) = ((a1—&1)z1 + (b1 +ic1)Z123, (a2 — E2)z2 + (b2 +ic2)Z224,
1 . 1 .
(a3 —251)z3 + E(bl —ic1)z2, (aa — 282)za + E(bz —ic2)z3). (34)

We can use the symmetries of the system (34) to easily identify a branch of relative
equilibria; we will then use the results of the previous sections to find other branches of
relative equilibria bifurcating from this branch. The grofib= Z, x S is an isotropy
subgroup of theG-action onC*, with fixed-point subspace Fi) = {(0,0, z3,0) |
z3 € C}. Therefore, this space is invariant under the niEp®); specifically,

D(h —(J,£))(0,0,23,0)= (0,0, (a3 — 21)z3, 0).

Here we make the standard identification(®f)* with C#. Thus every e[ement of H¥)
is a relative equilibrium, each with a one-parameter family of gener&orsy), where

£1=12a3(0,0, X3,0,0,0) (35)
andé; is arbitrary. The trajectory of each such relative equilibrium is
2() = (0,0, céfit, 0)

and is parameterized by a positive numbeaind a phase. We call this family of relative
equilibria RE; and analyze the bifurcation of new relative equilibria from this family
by applying our slice map decomposition in the poigts= (0, O, C, 0). Notice that the
isotropy subgroup of, equalsH :=Z x S1, with Lie algebra ig) := {(0, «): « € R}.

In constructing a slice mapping using Proposition 2.2, note that the linearity of the
phase spac€* allows us to use the trivial chart majp(u) = z, + u, whereu € C*. The
linearization of the momentum mapatis

bl

4CR
D‘J(Zf’)'(5Z17822:5Z3,5Z4):( C 8,(513))

with kerDJ(z.) = {(z1, 22,1y, z4): zj € C, y € R}. Using the notation introduced in the
first sections of the paper we have that thesethat is, the orthogonal complement to
h =g, in g, =g, andV, the orthogonal complement to z. = {(0, 0, 2i£C, 0) | £ e R}

in kerDJ(z.), equal

mr~m*={(»n0|neR} and V={(z1,22,0,24)|z; €C}.
Finally, we setW = {(0, 0, , 0) | n € R}. These choices yield the slice map

T

¥ (n,v):=(0,0,n(n),0) +v=(z1,22,n(n),z4), Wheren(n):=C+ ac



P. Chossat et al. / Advances in Applied Mathematics 31 (2003) 10-45 41

The composition of the augmented Hamiltonian with this slice k&p
(H5)(n,v) = h(X1, X2.n% X4, nY1, Uz, nZ1, Vo) — £1(X1 + 2n%) — £2(X2 + 2X4),

whereYq := Re(z%), Z1:= Im(z%), andn =n(n).

The analysis of the relative equilibria is simplified by the commutativity,ofvhich
implies thatg,, = g and the two “rigid” equilibrium conditions (RE1) and (RE2) are
trivially satisfied. Hence the first nontrivial step in the algorithm is Step 2: Thednadp
simplywi(, B, @) = (E1+ B, £2+ ). We setiz = az(X1, X2, n%, X4,nY1, U2, nZ1, V2) —
a3(0,0,n2,0,0,0,0,0). Then

2a3n + b1Y1+c1Z1 — 4pn

0= D= (H") (0, v) = 4c

Solving this equation fog yields

+

A b1Y1+c1Z
E(n,v,a)=(€1+ﬂ(n,v),§2+a)=(a—zs iy +a)

and
Dy (H="9) (. v)

a b1Y1+c1Z . -
= ((al - 53 - %)m + (b1 +icy)nz1, (a2 — (E2+ @))z22

. 1 .
+ (b2 +ic2)Z2z4, (aa — 2(&2 + @))za + >(b2— |cz)z§>. (36)

The bifurcation of relative equilibria froniR E;) depends on the invertibility of the
linearization of the relative equilibrium equation i at the point(0, 0). The second
variation Dy y (HZ)(0, 0) has eigenvalues and eigenspaces

M =a1— a—z?’ +C,/b?+c?  (simple)
T=a1— “—23 —c b2+ 2 (simple)

A2 =az2— & (double) Vo= {(O, 22,0,0) | zze(C},
ra=as— 26 (double) V4=1{(0,0,0,z4) | z4 € C}.

V1={(z1,0,0,0) | z1 € C},

These eigenvalues depend 6nwhich we can take as a free parameter. Note that the
isotypic decomposition o¥ with respect to the action df guarantees the decomposition
of Dyy (HZ)(0, 0) into three 2x 2 blocks associated tt251+ @ Vi, V2, andVy, since the
action of S* separates the; component fronx, andzs, while the action ofZ, separates
further thez, component from 4.

There are two kinds of bifurcation points:
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(1) Bifurcation at Air or A; = 0. As these are simple eigenvalues, the Lyapunov—
Schmidt procedure yields one-dimensional bifurcation equations. The conditions of
the Hamiltonian Equivariant Branching Lemma are met, hence we can conclude the
existence of a bifurcated branch of relative equilibria parameterizededR at each
of these points. Note that, acts as—Id on the eigenvectors associated with these
eigenvalues. Thus it follows that the bifurcation ipé@thforktype. The isotropy group
of these solutions still contain$'. Therefore these relative equilibria fill 1-tori, that
is, they are still periodic solutions for the Hamiltonian vector field.

Note that in this case; can be taken as the bifurcation parameter. However this is
equivalent to taking, sinceW is defined as the subspa@®, 0, C + 1, 0)} in C*.

(2) Bifurcation ati, = 0 or A4 = 0. In both of these cases, the eigenvalue is double
and therefore the spadé determined by the Lyapunov—Schmidt procedure is two
dimensional. Note tha§! x {I} acts trivially onV» and V4. Therefore, the isotropy
subgroup is maximal of complex type in both cases. Applying Theorem 5.2 yields
at least one branch of circles of relative equilibria in each case. In fact, there is a
two-parameter family (modulo symmetry) of relative equilibria containi®gEy).
These solutions live on 2-tori and are quasi-periodic whenever the ratio of the two
components of the generator is irrational. What distinguishes these two families, aside
from the fact that they bifurcate at different valueggfis their symmetry: the isotropy
of the solutions bifurcating in the, direction isZz, while it reduces to the trivial group
for those bifurcating in the, direction.

Note that while the bifurcations associated/\lﬁ = 0 generically occur only at isolated
values ofC, the bifurcations associated ¥ = 0 andi4 = 0 occur for any value o
satisfying the nondegeneracy conditios(0, 0, C2, 0) # a4(0, 0, C2, 0), since the second
componeng; of the generator af, can always be chosen to equalz.) or as(z.).

We now proceed with the actual solution of the bifurcation equation. We first consider
the bifurcation at)»ir = 0. Generically, the remaining eigenvalues are nonzero at this
point; we shall consider only this case. We simplify the algebra by setting 0.

The eigenspace for] is now V;" = {(x,0,0,0) | x € R}. SinceV;" is invariant under
Dy (H%), the uniqueness af; implies thatv; = 0 and the bifurcation equation (B1) is
simplyDV(H5)|Vl+ =0,ie.,

0= Dy (HEM(100-0) (3 (x1,0,0)) = (fa(n, x)x1.0,0),
where

fi(n.5) = 2ai(s,0,n%,0,ns,0) — as(s. 0,n% 0, ns, 0)
— ilal(s, 0, nz, 0, ns, 0), n=n(n).
n
Unless we are in the highly degenerate case in wiiiglf1(0, 0) = D, f1(0,0) = 0, we

can use the Implicit Function Theorem to solve for one variable in terms of the other. If,
for example, we solve fay as a function of, we obtain a unique functiom: (—e¢, ¢) - R
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for somee > 0 satisfying f1(n(s), s) = 0, and henceDv(HE("("f)’(xl’o’o)’“))(n(xf), (x1,
0,0)) = 0 for all xf € [0, ¢). Implicit differentiation of f2(n(s),s) = 0 yields n(s) =
ic + o(s2). Note that the group0} x ST is an isotropy subgroup af, with fixed-point
spacezz = z4 = 0. The bifurcation under consideration takes place in this subspace. The
caser; = 0is entirely analogous with the eigenspage = {(iy,0,0,0) | y e R}.

We now consider the casq # X2 = 0# A4. Again in order to (slightly) simplify the
algebra, we saty = 0. Application of the Lyapunov—Schmidt procedure yields

bzz%

, X2)=(0,0,0, . X92)), h , Xo) = .
v1(n, X2) = ( z4(n, X2)),  whereza(n, X2) D= 2@+ o))

Substitutinguy into Dy (K= V@) (y, v) yields

B(n.z2.0) = Dy (H —jZ 02t X0) () 75 4 v1(n, X2))
(0. f2(n. X2, @)z2,0,0),

where

b%Xz
+ «;
2(as — 2(az + )

fo(n, X2,a) :=

hereay, as, andb, are all evaluated at0, X2, n(1)2, 0, 0). Since f»(0,0,0) = 0 and
Dy f2(0,0,0) = 1, there exists a neighborhodt of (0,0) in R x [0, co) and a function
a: W — R such thatfa(n, X2, a(n, X2)) =0 for all (n, X2) € W. Since f» depends ony
only throughX» = |z2|2, each zero off, determines a circle of critical points 3. The
caserq = 0 is entirely analogous.

Note that in the cases; = 0 andi4 = 0, varying the parameter simply shifts the
real component ofz, and hence is equivalent to shifting the initial relative equilibrium
ze = (0,0, C,0); thus, when computing the complete bifurcation diagram near the
line {(0,0,C,0): C € R}, we find that generically two pitchforks of revolution, one
corresponding ta., = 0 and the other ta4 = 0, emerge from each poind, 0, C, 0). In
addition, there may be isolated points at which conventional (one dimensional) pitchforks
emerge, correspondingmic =0.
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