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Abstract

For a symmetric Hamiltonian system, lower bounds for the number of relative equilibria sur-
rounding stable and formally unstable relative equilibria on nearby energy levels are given.

1 Introduction

The search for relative equilibria in the presence of non degeneracy hypotheses has been an extremely
active field of research [MO97, RdSD97, MR99, LS98, OR97, O98, CLOR03, He01] during the last few
years. In this paper, we will study in a differentiated manner the existence of relative equilibria around
stable and formally unstable equilibria and relative equilibria. We will give estimates on the number of
these solutions in terms of readily computable quantities, in order to facilitate the application of these
results to specific systems.

A major difference between the bifurcation and persistence results presented in this paper and
those in [MO97, RdSD97, MR99, LS98, OR97, O98, He01] is that in our case the solutions obtained
are parametrized by energy and not by momentum and, most importantly, our hypotheses do not
require the non degeneracy conditions present in all those papers. Consequently our results, particularly
theorems 4.1 and 7.4, can be seen as statements on not mere persistence of dynamical elements but on
genuine bifurcation phenomena.

The contents of the paper and, in particular the main results, are structured as follows:

• Section 2 contains some preliminaries on symmetric Hamiltonian systems and critical point theory
that will be needed in the statements and proofs of the main results.

• Section 3 contains a result (Theorem 3.1) which provides a lower bound for the number of relative
equilibria surrounding a stable symmetric Hamiltonian equilibrium whenever a velocity satisfying
certain hypotheses can be found.

• Section 4: the superposition of the methods used in Theorem 3.1 with the standard Lyapunov–
Schmidt reduction procedure, as well as other techniques dealing with the bifurcation theory
of gradient systems, provide in Theorem 4.1 an existence result on branches relative equilibria
surrounding formally unstable equilibria.

• Section 5 contains two examples that illustrate the implementation of Theorem 4.1.

• Section 6 is a brief exposition of the Marle–Guillemin–Sternberg normal form [Mar85], [GS84] and
the reconstruction equations [O98, RWL99] needed in the next section. The expert can skip this
section.
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2Centre Bernoulli, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. Tudor.Ratiu@epfl.ch.

1



Ortega and Ratiu: Relative equilibria near stable and unstable Hamiltonian relative equilibria 2

• Section 7 presents as main results theorems 7.1 and 7.4, which are the natural generalizations
of theorems 3.1 and 4.1, respectively, to the study of relative equilibria surrounding a genuine
relative equilibrium, using the normal form theory and the reconstruction equations presented in
the previous section.

2 Preliminaries

G–Hamiltonian systems. In this paper we will work in the category of symmetric Hamiltonian
systems (see, for instance, [AM78]). This means that one considers triples (M,ω, h), where ω is a
symplectic two–form on the manifoldM and h ∈ C∞(M) is a smooth function, called the Hamiltonian.
Then one associates to h a Hamiltonian vector field Xh via the Hamilton equations iXhω = dh.
The symmetries of the system are defined by the left action of a Lie group G on the manifold M that
preserves both the symplectic structure ω, that is, the group action is canonical, and the Hamiltonian
function h. The action of g ∈ G on m ∈ M will be usually denoted by g ·m, the space of G–invariant
smooth functions onM is denoted by C∞(M)G, g is the Lie algebra of G, g∗ is its dual, and exp : g→ G
denotes the exponential map. In most cases we will assume that the G–action is also proper and globally
Hamiltonian, that is, we can associate to it an equivariant momentum map J : M → g∗ defined by
iξMω = dJξ, where ξM (m) := (d/dt) exp tξ ·m|t=0 is the infinitesimal generator vector field associated
to ξ ∈ g and Jξ = 〈J, ξ〉 is the ξ–component of the momentum map J. By Noether’s Theorem,
J is preserved by the flow of any Hamiltonian vector field associated to any G–invariant Hamiltonian
function h ∈ C∞(M)G. In particular, the level sets of J are invariant by the flow of Xh.

In the first sections of the paper we will work on a Hamiltonian symplectic vector space (V, ω),
where there is a compact Lie group G acting linearly and canonically. Any such action has an associated
equivariant momentum map J : V → g∗ defined by 〈J(v), η〉 = 1

2ω(η · v, v), for any v ∈ V , η ∈ g. The
symbol η · v denotes the representation of g on V , which equals ηV (v), the value at v of the infinitesimal
generator ηV .

A relative equilibrium of the G–invariant Hamiltonian h is a point m ∈M such that the integral
curve m(t) of the Hamiltonian vector field Xh starting at m equals exp(tξ) · m for some ξ ∈ g. Any
such ξ is called a velocity or generator of the relative equilibrium m. Note that if m has a non trivial
isotropy subgroup Gm, ξ is not uniquely determined. Note also that the G–equivariance of the flow of
Xh implies that if m is a relative equilibrium with velocity ξ then g ·m is also a relative equilibrium but
with velocity Adg ξ for any g ∈ G, where Adg is the adjoint representation of G on g. Thus, we are led
to introduce the notion of distinct relative equilibria: we say that two relative equilibria are distinct
when the associated equilibria in the quotient space M/G are distinct. More generally, if H is a closed
subgroup of G, we say that two relative equilibria are H–distinct when the associated equilibria in
the quotient space M/H are distinct. The topological space M/G is not a manifold in general and the
equilibrium needs to be understood in terms of the induced flow on the quotient, that is, an equilibrium
in M/G is a point [m] ∈M/G such that the quotient flow leaves it fixed.

A key property of symmetric Hamiltonian systems that will be heavily used in this paper is the
fact that a point m ∈ M is a relative equilibrium with velocity ξ if and only if it is a critical point of
the so called augmented Hamiltonian hξ := h − Jξ. Thus m ∈ M is a relative equilibrium of the
Hamiltonian system with symmetry (M,ω, h,G,J) with velocity ξ ∈ g if and only if dhξ(m) = 0.

If f ∈ C∞(M)G has a critical point m then g ·m is also a critical point of f for any g ∈ G. We shall
call critical orbits of f the G–orbits all of whose points are critical points of f .

The G–Lusternik–Schnirelman category. LetM be a compact G–manifold, with G a compact Lie
group. An approach to the search of critical orbits of G–invariant functions onM consists of using of the
so called equivariant Lusternik–Schnirelman category or G–Lusternik–Schnirelman category,
denoted by the symbols G–Cat or CatG, and introduced in different versions and degrees of generality by
Fadell [Fa85], Clapp and Puppe [CP86, CP91], and Marzantowicz [Mar89]. The equivariant Lusternik–
Schnirelman category is not the standard Lusternik–Schnirelman category of the orbit space of the
action, but the minimal cardinality of a covering of the G–manifold M by G–invariant closed subsets
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that can be equivariantly deformed to an orbit. This new category is a lower bound for the number of
critical orbits of a G–invariant function on M and it can be proven (see for instance [Fa85, page 43])
that CatG(M) ≥ Cat(M/G), where equality holds, for instance, when the G–action on M is free. The
use of this definition has allowed Bartsch [Ba94] to provide the following estimate:

Proposition 2.1 Let G be a compact Lie group that contains a maximal torus T and that acts linearly
on the vector space V . Suppose that the vector subspace V T of T–fixed vectors on V is trivial, that is,
V T = {0}, then

CatG(M) ≥ dimV
2(1 + dimG− dimT )

=
dimV

2(1 + dimG− rankG)
.

We recall for future use that a G–invariant function f ∈ C∞(M)G on a G–space M is said to be
G–Morse or equivariantly Morse when all its critical points z ∈M satisfy that kerd2f(z) = g · z.

The Splitting Lemma. The proof of the following standard result can be found, for instance,
in [BrL75].

Lemma 2.2 Let f ∈ C∞(V ×W ) with V and W finite dimensional vector spaces and such that the
mapping f |W , defined by f |W (w) := f(0, w), has a non–degenerate critical point at 0. Then there is
a local diffeomorphism defined around the point (0, 0), of the form ψ(v, w) = (v, ψ1(v, w)), such that
(f ◦ ψ)(v, w) = f̄(v) +Q(w), where Q is the non–degenerate quadratic form Q = 1

2d
2f |W (0), and f̄ is

a smooth function on V .

3 Relative equilibria around a stable equilibrium

In this section we will prove the existence, under certain hypotheses, of relative equilibria around a
symmetric stable equilibrium of the system (V, ω, h,G,J), where G is a compact Lie group that acts
canonically and linearly on the symplectic vector space V . As we will see in Section 6 (see Remark 6.2)
working in the category of linear symplectic spaces implies no loss of generality.

Theorem 3.1 Let (V, ω, h,G,J) be a Hamiltonian G–vector space, with G a compact Lie group. Suppose
that h(0) = 0, dh(0) = 0, and the quadratic form Q := d2h(0) on V is definite. Let ξ ∈ g be such that
the quadratic form d2Jξ(0) is non degenerate. Then, for each energy value ε small enough, there are at
least

CatGξ
(
h−1(ε)

)
= CatGξ

(
Q−1(ε)

)
(3.1)

Gξ–distinct relative equilibria in h−1(ε) whose velocities are (real) multiples of ξ. The symbol Gξ :=
{g ∈ G | Adg ξ = ξ} denotes the adjoint isotropy of the element ξ ∈ g and CatGξ is the Gξ–Lusternik–
Schnirelman category.

Remark 3.2 The estimate (3.1) guarantees the existence of at least one relative equilibrium on each
nearby level set of the Hamiltonian, since the G–Lusternik–Schnirelman category of a compact topolog-
ical space is always at least one. �

Remark 3.3 The hypotheses on the Hamiltonian function, namely dh(0) = 0 and the definiteness of
the quadratic form d2h(0), guarantee that the origin is a stable equilibrium of the Hamiltonian vector
field Xh (see, for instance, [AM78]). �

Remark 3.4 The optimal way to apply the theorem consists of studying the estimate that it provides
in the fixed point spaces of the various isotropy subgroups of the symmetries in the problem. To be more
specific, let (V, ω, h,G,J) be a Hamiltonian system with symmetry with G a compact Lie group. Let
H ⊂ G be an isotropy subgroup of the G–action on V . It can be easily shown that the vector subspace
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V H of H–fixed vectors is a symplectic subspace of V and that it is left invariant by the flow associated
to G–invariant Hamiltonians. Moreover, if N(H) is the normalizer of H in G, the group L := N(H)/H
acts naturally and canonically on V H and has associated momentum map JL : V H → l∗ given by
JL(v) = Λ∗(J(v)), where v ∈ V H and Λ∗ is the natural L–equivariant isomorphism Λ∗ : (h◦)H −→ l∗,
between the H–fixed point set of vectors in the annihilator of h in g∗ and the dual of the Lie algebra of
L = N(H)/H (see [O98, OR03] for the details).

If instead of applying the previous results to the system (V, ω, h,G,J) we do it on the family of
systems (V H , ω|V H , h|V H , N(H)/H,JL) parameterized by the isotropy subgroups H we will obtain
more solutions of the problem and, at the same time, we will obtain an estimate on their isotropies (this
is especially sharp when we focus on the maximal isotropy subgroups of the action). �
Proof. Since d2h(0) is definite, the Morse Lemma (see, for instance, [Mil69]) implies that for all ε
small enough, the level sets h−1(ε) are compact submanifolds diffeomorphic to spheres. Since h is G–
invariant these level sets h−1(ε) are also G–invariant. At the same time notice that the equivariance
of the momentum map J implies that Jξ ∈ C∞(V ) is Gξ–invariant and therefore the restriction of Jξ

to the level sets h−1(ε) has at least CatGξ
(
h−1(ε)

)
critical Gξ–orbits. Let v(ε) be one of those critical

points. By the Lagrange Multiplier Theorem (see, for instance, [AMR99, page 211]) there exists a real
number (a multiplier) Λ(v(ε)) ∈ R such that

dJξ(v(ε)) = Λ(v(ε))dh(v(ε)). (3.2)

The non degeneracy of d2Jξ(0) implies that zero is an isolated critical point of Jξ hence, by taking ε
small enough, we can force the set {v ∈ V | h(v) ≤ ε} (whose boundary is the level set h−1(ε)) to contain
only zero as a critical point of Jξ. If we restrict ε to that range, we can guarantee that the multiplier
Λ(v(ε)) in (3.2) is not zero since otherwise v(ε) would be a critical point of Jξ in {v ∈ V | h(v) ≤ ε}
which is impossible by construction. This circumstance and the linearity of Jξ in ξ implies that we can
rewrite (3.2) as d

(
h− Jξ/Λ(v(ε))

)
(v(ε)) = 0, that is, the point v(ε) is a relative equilibrium of the vector

field Xh with velocity ξ/Λ(v(ε)).
The fact that CatGξ

(
h−1(ε)

)
= CatGξ

(
Q−1(ε)

)
is a consequence of the equivariant Morse Lemma

(see [Bott82] and the Appendix of [VvdM95]) by virtue of which there exists a local G–equivariant
diffeomorphism ψ of V around the origin such that h ◦ Ψ = Q. Since the G–Lusternik–Schnirelman
category is a topological invariant, the equality follows. �

4 Relative equilibria around formally unstable equilibria

In this section we will present a result concerning the bifurcation of relative equilibria from a formally
unstable equilibrium. The motivation for this result comes after realizing that the stability hypothesis
in the statement of Theorem 3.1 is too strong. We illustrate this fact by giving a very simple example
in which the hypotheses of Theorem 3.1 are violated due to the absence of the definiteness hypothesis
and nevertheless there exist relative equilibria around the equilibrium in question. Let V = R4 endowed
with the symplectic structure ω = dq1 ∧dp1 +dq2 ∧dp2. Consider the canonical action of the group S1

given by (eiθ, (q1, q2, p1, p2)) �→ (Rθ(q1, p1), Rθ(q2, p2)), where Rθ(qi, pi) denotes the rotation with angle
θ of the vector (qi, pi). This action has an equivariant momentum map J : R4 → R associated given by
J(q1, q2, p1, p2) = 1

2 (q21 + p21 − q22 − p22). Consider now the S1–invariant Hamiltonian h(q1, q2, p1, p2) =
(q21 + p21)− 2(q22 + p22) + (q21 + p21)(q

2
2 + p22). Clearly the definiteness hypothesis in Theorem 3.1 does not

hold for h. Nevertheless, since

d(h− Jξ)(q1, q2, p1, p2) = (q1(2 + 2(p22 + q22)− ξ), p1(2 + 2(p22 + q22)− ξ),
q2(ξ − 4 + 2(p21 + q21)), p2(ξ − 4 + 2(p21 + q21))),

any point of the form (0, q2, 0, p2) is a S1–relative equilibrium with velocity ξ = 4. The same can be
said about the points of the form (q1, 0, p1, 0), with velocity ξ = 2.

The following result is capable of predicting these critical elements. More explicitly, we will show
that even if d2h(0) is indefinite, under certain circumstances, the existence of relative equilibria around
a given equilibrium is guaranteed.
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Theorem 4.1 Let (V, ω, h,G,J) be a Hamiltonian G–vector space, with G a compact Lie group. Suppose
that h(0) = 0 and dh(0) = 0. Let ξ ∈ g be a root of the polynomial equation:

det
(
d2

(
h− Jξ

)
(0)

)
= 0. (4.1)

Define

V0 := ker
(
d2

(
h− Jξ

)
(0)

)
and suppose that:

(i) The restricted quadratic form Q := d2h(0)|V0 on V0 is definite.

(ii) Let ‖ · ‖ be the norm on V0 defined by ‖v0‖ := d2h(0)(v0, v0), v0 ∈ V0. This map is indeed a
norm due to the definiteness assumption on d2h(0)|V0 (if d2h(0)|V0 is negative definite, a minus
sign is needed in the definition). Let l = dimV0 and Sl−1 be the unit sphere in V0. The function
j ∈ C∞(Sl−1) defined by j(u) := 1

2d
2Jξ(0)(u, u), u ∈ Sl−1, is Gξ–Morse with respect to the

Gξ–action on Sl−1.

Then there are at least

CatGξ
(
h|−1
V0

(ε)
)

= CatGξ
(
Q−1(ε)

)
(4.2)

Gξ–distinct relative equilibria of h on each of its energy levels near zero. These relative equilibria appear
in smooth branches when the energy is varied and their velocities are close to ξ. The symbol Gξ denotes
the adjoint isotropy of the element ξ ∈ g and CatGξ the Gξ–Lusternik–Schnirelman category.

Before we proceed to prove the theorem we see how it is actually capable of predicting the relative
equilibria that we discussed in the motivational example preceding the statement. Indeed, a straight-
forward calculation shows that in that case, the equation on ξ, that is, det

(
d2

(
h− Jξ

)
(0)

)
= 0, has

ξ = {2, 4} as roots. We associate to each of these roots the spaces V 2
0 = {(q1, 0, p1, 0) ∈ V | q1, p1 ∈ R},

and V 4
0 = {(0, q2, 0, p2) ∈ V | q2, p2 ∈ R}. The restriction of d2h(0) to both spaces is definite and the

corresponding spheres Q−1(ε) amount to circles on which the symmetry group acts transitively forcing
the equivariant Morse hypothesis on the functions j to hold. Consequently, Theorem 4.1 provides us
with the relative equilibria that we found by hand in this example.

Proof. Let gG
ξ

be the set of elements in g fixed by the adjoint action of the subgroup Gξ on g.
Note that, by the definition of Gξ, ξ ∈ gG

ξ

. Let F : V × gG
ξ → V be the mapping defined by

F (v, α) := ∇V

(
h− Jξ+α

)
(v), v ∈ V , α ∈ gG

ξ

, where the symbol ∇V denotes the gradient defined with
the aid of a G–invariant inner product on V , always available by the compactness of G. We will search
the relative equilibria of the system by looking for the zeros of the mapping F .

Step 1: Lyapunov–Schmidt Reduction. We start this study by first performing a Lyapunov–
Schmidt reduction on F (see [GoS85]). Let L : V → V be the mapping defined by L(v) = dF (0, 0) · v.
It is easy to show that for any v, w ∈ V , 〈L(v), w〉 = d2(h − Jξ)(0)(v, w) and therefore V0 = kerL.
Notice that due to the Gξ–equivariance of L, the subspace V0 is Gξ–invariant. Let V1 be a Gξ–invariant
complement to V0 in V , that is, V = V0⊕V1. Let P : V → V0 be the canonical Gξ–equivariant projection
associated to this splitting and v = v0 +v1 be the decomposition of an arbitrary element v ∈ V in terms
of its V0 and V1 components. The equation (I− P)F (v0 + v1, α) = 0 defines, via the Implicit Function
Theorem, a Gξ–equivariant mapping v1 : V0 × gG

ξ → V1 such that

(I− P)F (v0 + v1(v0, α), α) = 0. (4.3)

Step 2: Properties of v1. The function v1 satisfies the properties that we collect in the following
lemma whose proof is straightforward:

Lemma 4.2 The function v1 defined in (4.3) is Gξ–equivariant and satisfies the following properties:
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(i) v1(0, α) = 0,

(ii) Dαv1(0, 0) = 0 and DV0v1(0, 0) = 0,

(iii) d2(h− Jξ)(0)(DV0,αv1(0, 0) · (v, α), z) = d2Jα(0)(v, z).

for any α ∈ gG
ξ

, u, v, w ∈ V0, and z ∈ V1. The symbols DV0 , Dα, and DV0,α denote the partial
Fréchet derivatives relative to the V0, the α–variable, and the second partial derivative relative to the
two variables V0 and gG

ξ

, respectively.

Step 3: The Bifurcation Equation. With all these ingredients, the final Lyapunov–Schmidt Gξ–
equivariant reduced equation is given by B : V0 × gG

ξ → V0, where

B(v0, α) = PF (v0 + v1(v0, α), α) = P∇V (h− Jξ+α)(v0 + v1(v0, α))
= ∇V (h− Jξ+α)(v0 + v1(v0, α)) (by (4.3)). (4.4)

Hence, we have reduced the problem of finding the zeros of F to that of finding the zeros of the Gξ–
equivariant map B which is defined in a smaller dimensional space. This reduction technique has already
been exploited in the symmetric Hamiltonian framework in [CLOR03, COR02]. The reduced equation
B is the gradient of a Gξ–invariant function defined on V0, that is, B(v0, α) = ∇V0g(v0, α), where the
function g : V0 × gG

ξ → V0 is given by g(v0, α) = (h− Jξ+α)(v0 + v1(v0, α)).
The following lemma provides two additional properties of the reduced bifurcation equation that will

be used later on. The proof is a straightforward differentiation of the function B aided by the properties
in Lemma 4.2.

Lemma 4.3 The reduced bifurcation equation satisfies the following two properties:

(i) DV0B(0, 0) = 0,

(ii) 〈DV0,αB(0, 0)(v0, α), w0〉 = −d2Jα(0)(v0, w0),

for any v0, w0 ∈ V0 and any α ∈ gG
ξ

.

Step 4: Critical Points and Lagrange Multipliers. We now define, for any α, β ∈ gG
ξ

, the
functions:

Hα(v0) := h(v0 + v1(v0, α)), Jβα(v0) := Jβ(v0 + v1(v0, α)). (4.5)

Using the properties in Lemma 4.2 and the fact that dh(0) = 0 it is easy to see that for any α ∈ gG
ξ

dHα(0) = 0 and d2H0(0) = d2h(0)|V0 . (4.6)

The definiteness hypothesis on d2h(0)|V0 and the invariance properties of h allow us to define a
G–invariant norm ‖ · ‖ on V0 by taking

‖v0‖2 := d2h(0)(v0, v0). (4.7)

Moreover, the Splitting Lemma 2.2 and (4.6) guarantee the existence of a local Gξ–equivariant change
of variables on V0 around the origin in which the function Hα takes the form

Hα(v0) = ‖v0‖2 + f(α), (4.8)

where f : gG
ξ → R is a smooth function such that f(0) = 0. Note that (4.8) implies that for a fixed

value of the parameter α, the level sets of the function Hα are Gξ–equivariantly diffeomorphic to spheres
provided that we stay close enough to the origin in V0.
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We will now follow a strategy similar to the one presented in Theorem 3.1 in order to establish the
theorem. For any α, β ∈ gG

ξ

, the mapping Jξ+βα ∈ C∞(V0) is Gξ–invariant and therefore, its restriction
to the level sets H−1

α (ε) has at least

CatGξ
(
H−1
α (ε)

)
(4.9)

critical Gξ–orbits, where α and ε are chosen to be small enough so that the expression (4.8) is valid. Let
v0(ε, α, β) be one of those critical points. Again, by the Lagrange Multiplier Theorem [AMR99, page
211], there exists a multiplier Λ(ε, α, β) ∈ R such that

dJξ+βα (v0(ε, α, β)) = Λ(ε, α, β)dHα(v0(ε, α, β)). (4.10)

This relation does not imply that we have found relative equilibria because, even though the functions
involved in (4.10) resemble the momentum map and the Hamiltonian, they are only Lyapunov reduced
versions of them. The rest of the proof consists of showing that there exist smooth branches in the
parameters α and β such that when restricted to those, the expression (4.10) implies that the bifurcation
equation (4.4) has a zero and hence a branch of relative equilibria will have been found.

Step 5: The Blow–Up Argument. In the following paragraphs we will prove that if we reparametrize
the mapping v0(ε, α, β) that describes the “branch” of critical points of Jξ+βα on the level sets of Hα

with the norm of v0 instead of with ε, we can choose the resulting function to be smooth. We will
denote the norm of v0 by r. Recall that by (4.8), the relation between r and ε is given, for a fixed α,
by ε = r2 + f(α). Let v0(r, α, β) be the function obtained out of v0(ε, α, β) via that relation. As we
just said, we will see that the genericity hypotheses under which we are working will guarantee the local
smoothness around the origin of v0(r, α, β). Indeed, let us first reformulate our problem using polar
coordinates on V0 (blow-up), that is, v0 = ru, with r ∈ R and u ∈ Sl−1, l := dimV0, and Sl−1 is the
unit sphere on V0, defined via the norm (4.7). We now define:

H̄α(r, u) := Hα(ru), J̄ξ+βα (r, u) := Jξ+βα (ru). (4.11)

The function J̄ξ+βα can be rewritten as J̄ξ+βα (r, u) = r2Ĵξ+βα (r, u), where Ĵξ+βα (r, u) = fα,β(u)+gα,β(r, u),
with fα,β and gα,β smooth functions on their arguments such that gα,β(0, u) = 0 for any u ∈ Sl−1,
α, β ∈ gG

ξ

, and fα,β(u) = 1
2d

2Jξ+β(0)(u +DV0v1(0, α) · u, u +DV0v1(0, α) · u). Since for a fixed value
of the parameter α, the level sets of Hα are spheres (r is constant), the critical points of Ĵξ+βα |H−1

α (ε)

coincide with the critical points of J̄ξ+βα |H−1
α (ε), which is what we are trying to describe.

Step 6: Smoothness of the branches of critical points. In order to show that these critical
points come in smooth branches, consider the Gξ–invariant function j on the sphere Sl−1, defined by
j(u) := 1

2d
2Jξ(0)(u, u), u ∈ Sl−1. Let u0 ∈ Sl−1 be one of its critical orbits provided, for instance,

by an estimate of the form (4.9). Due to the Gξ–invariance of j, u0 is inevitably a degenerate critical
point of j. Since by hypothesis j is Gξ–Morse, we have that, kerd2j(u0) = gξ · u0, where gξ · u0 is
the tangent space at the point u0 to the Gξ–orbit that goes through it. Let now σ be a local cross–
section of the homogeneous space Gξ/Gξ

u0
, that is, a differentiable map σ : Z → Gξ, where Z is an

open neighborhood of Gξ
u0

in the homogeneous space Gξ/Gξ
u0

such that σ(Gξ
u0

) = e and σ(z) ∈ z, for
z ∈ Z. The existence of these local cross–sections is well known (see for instance [Che46, page 109]).
The Slice Theorem [Pal61, propositions 2.1.2 and 2.1.4] guarantees the existence of a submanifold Su0

of Sl−1 going through u0 (the Gξ–slice through u0), such that the product Z × Su0 is diffeomorphic
to a neighborhood of u0 in Sl−1 via the map (gGξ

u0
, u) �→ σ(gGξ

u0
) · u. When gξ · u0 = Tu0S

l−1

then Su0 = {u0} and all subsequent arguments have obvious simplifications. Let (U,ψ = (ψ1, ψ2)) be a
product chart for the product manifold Z×Su0 around the point (Gξ

u0
, u0) such that ψ(Gξ

u0
, u0) = (0, 0).

Denote by (z, s) the elements in ψ(U) that we can use to parametrize a neighborhood of u0 in Sl−1

via the map ϕ : ψ(U) → Sl−1 given by (z, s) �−→ σ(ψ−1
1 (z)) · ψ−1

2 (s). Notice that ϕ(0, 0) = u0 and
gξ · u0 = Tu0ϕ(ψ1(Z)× {0}).

We now go back to the description of the critical points of Ĵξ+βα . Since we are interested on how these
critical points behave when we move around u0 we will write the function Ĵξ+βα using the diffeomorphism
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ϕ. First, the Gξ–invariance of Ĵξ+βα implies that its representative in (z, s) coordinates does not depend
on z, that is, it has the form Ĵξ+βα (r, s) = fα,β(s) + gα,β(r, s), where f0,0(s) = j(s). Second, since
dj(u0) = 0, then dsĴ

ξ
0(0, 0) = 0. Also, since d2j(u0)|Tu0Su0

is non degenerate, so is d2
sĴ

ξ
0(0, 0), hence

we can define via the Implicit Function Theorem a smooth function s(r, α, β) such that the points on
V0 of the form rϕ(z, s(r, α, β)) constitute critical orbits of the restriction of Ĵξ+βα to the level sets of Hα,
that is, dsĴξ+βα (r, s(r, α, β)) = 0. Consequently, the smooth branch that we are looking for is:

v0(r, α, β) := rϕ(0, s(r, α, β)) = rψ−1
2 (s(r, α, β)). (4.12)

As a corollary to the preceding ideas we obtain that the Lagrange multiplier Λ(ε, α, β) ∈ R introduced
in (4.10) is smooth in its arguments if we reparametrize it as a function of the form Λ(r, α, β). Indeed,
if we pair both sides of (4.10), using the new parameterization, with v0(r, α, β) we have that

Λ(r, α, β) =
dJξ+βα (v0(r, α, β)) · v0(r, α, β)
dHα(v0(r, α, β)) · v0(r, α, β)

.

As we can easily deduce by looking at (4.8), the denominator of this expression is different from zero as
long as we are not at the origin, that is, when r = 0. Elsewhere, the function Λ(r, α, β) is a combination
of smooth objects, thereby smooth. In the following Lemma we see that actually the origin is not a
singularity and that the function Λ is smooth also in there.

Lemma 4.4 Let Λ(r, α, β) be the multiplier introduced in the previous paragraphs. Then, the function
Λ(r, α, β) is smooth at the point (0, 0, 0) and, moreover we have that Λ(0, 0, 0) = 1.

Proof. We will deal with this problem using polar coordinates. Let H̄α(r, u) and J̄ξ+βα (r, u) be the
functions introduced in (4.11). Recall that

J̄ξ+βα (r, u) = r2
[
1
2
d2Jξ+β(0)(u+DV0v1(0, α) · u, u+DV0v1(0, α) · u) + gα,β(r, u)

]
,

and

H̄α(r, u) = r2
[
1
2
d2h(0)(u+DV0v1(0, α) · u, u+DV0v1(0, α) · u) + qα,β(r, u)

]
,

where gα,β and qα,β are smooth functions such that gα,β(0, u) = qα,β(0, u) = 0 for any u ∈ Sl−1,
α, β ∈ gG

ξ

. It is easy to see that

∂J̄ξ+βα

∂r
(r, u) = 2r

[
1
2
d2Jξ+β(0)(u+DV0v1(0, α) · u, u+DV0v1(0, α) · u) + gα,β(r, u)

]
+ r2

∂gα,β
∂r

(r, u),

∂H̄α

∂r
(r, u) = 2r

[
1
2
d2h(0)(u+DV0v1(0, α) · u, u+DV0v1(0, α) · u) + qα,β(r, u)

]
+ r2

∂qα,β
∂r

(r, u),

∂J̄ξ+βα

∂r
(r, u) = dJξ+βα (ru) · u.

We pair the defining expression of the multiplier (4.10) on both sides with ψ−1
2 (s(r, α, β)). By (4.12)

and the three relations above we get

Λ(r, α, β) =
dJξ+βα (v0(r, α, β)) · u
dHα(v0(r, α, β)) · u

=
2

[
1
2d

2Jξ+β(0)(u+DV0v1(0, α) · u, u+DV0v1(0, α) · u) + gα,β(r, u)
]
+ r ∂gα,β∂r (r, u)

2
[
1
2d

2h(0)(u+DV0v1(0, α) · u, u+DV0v1(0, α) · u) + qα,β(r, u)
]
+ r ∂qα,β∂r (r, u)

, (4.13)
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where in the previous expression the symbol u denotes ψ−1
2 (s(r, α, β)) (see 4.12). Notice that since we

have had one cancellation of r, the previous expression is not singular anymore at the point (0, 0, 0).
Moreover,

Λ(0, 0, 0) =
d2Jξ(0)(u, u)
d2h(0)(u, u)

= 1,

given that u ∈ V0 = ker
(
d2

(
h− Jξ

)
(0)

)
and, therefore d2Jξ(0)(u, u) = d2h(0)(u, u) �= 0, by the

definiteness hypothesis on d2h(0)|V0 . �.

Step 7: Reduction of the problem to a scalar equation.

Lemma 4.5 Let Λ(r, α, β) be the multiplier defined by relation (4.10). There exists a complement W1 to
Rξ in gG

ξ

and two mappings ρ : R×gG
ξ×Rξ → gG

ξ

and λ : R×W1×Rξ → R defined on neighborhoods
of the origin such that ρ(0, 0, 0) = 0, λ(0, 0) = 0, and

ξ + w0 + ρ(r, λ(r, ν, w0)ξ + ν, w0)
Λ(r, λ(r, ν, w0)ξ + ν, w0 + ρ(r, λ(r, ν, w0)ξ + ν, w0))

= ξ(1 + λ(r, ν, w0)) + ν.

Proof. Let E : R × gG
ξ × gG

ξ → gG
ξ

be the locally defined mapping given by E(r, α, β) := ξ + β −
Λ(r, α, β)(ξ + α). Note that by Lemma 4.4, E(0, 0, 0) = 0. Now, for each β ∈ gG

ξ

, we have that

DβE(0, 0, 0) · β =
d

dt

∣∣∣∣
t=0

(ξ + tβ − Λ(0, 0, tβ)ξ) = β − ξ (DβΛ(0, 0, 0) · β) .

If {ξ, η1, . . . , ηp} is a basis of gG
ξ

, then the matrix of the linear map DβE(0, 0, 0) : gG
ξ → gG

ξ

in
that basis equals:

DβE(0, 0, 0) :=


1−DβΛ(0, 0, 0) · ξ −DβΛ(0, 0, 0) · η1 · · · −DβΛ(0, 0, 0) · ηp

0 1 · · · 0
...

...
. . . 0

0 0 · · · 1

 .

We shall prove that 1−DβΛ(0, 0, 0) · ξ = 0. To do this we recall that

Λ(0, 0, β) =
d2Jξ+β(0)(ψ−1

2 (s(0, 0, β), ψ−1
2 (s(0, 0, β))

d2h(0)(ψ−1
2 (s(0, 0, β)), ψ−1

2 (s(0, 0, β))
.

Therefore,

DβΛ(0, 0, 0) · β

=
1

(d2h(0)(u0, u0))2
[(

d2Jβ(0)(u0, u0) + 2d2Jξ(0)(Dβ(ψ−1
2 ◦ s)(0, 0, 0) · β, u0))

)
d2h(0)(u0, u0)

−2d2Jξ(0)(u0, u0)d2h(0)(Dβ(ψ−1
2 ◦ s)(0, 0, 0) · β, u0)

]
=

d2Jβ(0)(u0, u0)
d2h(0)(u0, u0)

,

where the last equality is a consequence of the fact that u0 ∈ ker(d2(h − Jξ)(0)). Consequently, when
we set β = ξ in this identity we obtain that DβΛ(0, 0, 0) · ξ = 1.

This implies that W0 := kerDβE(0, 0, 0) = Rξ so by choosing W1 := span{η1, . . . , ηp} we can write
gG

ξ

= W0⊕W1. Let PW0 be the projection onto W0. The identity (I−PW0)E(r, α, w0 +w1) = 0 can be
solved by the Implicit Function Theorem for w1, which gives us a smooth function ρ : R×gG

ξ×Rξ →W1

that satisfies

(I− PW0)E(r, α, w0 + ρ(r, α, w0)) ≡ 0. (4.14)
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Therefore, the solutions of the equation E(r, α, β) = 0 are in bijective correspondence with the solutions
of the scalar equation

PW0E(r, α, w0 + ρ(r, α, w0)) = 0 (4.15)

that we will now solve using the Implicit Function Theorem.

Step 8: Solution of the scalar equation using the Implicit Function Theorem. We set

g(r, α, w0) := PW0E(r, α, w0 + ρ(r, α, w0)) = ξ + w0 − Λ(r, α, w0 + ρ(r, α, w0))(ξ + PW0α). (4.16)

Now, the definition of the function ρ in (4.14) can be rewritten as

(I− PW0)E(r, α, w0 + ρ(r, α, w0)) = ρ(r, α, w0)− Λ(r, α, w0 + ρ(r, α, w0))(I− PW0)α,

which implies that for any value of the parameters r and w0 we have that ρ(r, 0, w0) = 0. Additionally,
by implicit differentiation we obtain that Dαρ(0, 0, 0) = I − PW0 . These identities guarantee that
g(0, 0, 0) = ξ − Λ(0, 0, 0)ξ = 0 and that

Dαg(0, 0, 0) · α = −DαΛ(0, 0, 0) · α−DβΛ(0, 0, 0) ·Dαρ(0, 0, 0) · α− PW0 · α

= −DαΛ(0, 0, 0) · α− d2J(I−PW0 )α(0)(u0, u0)
d2h(0)(u0, u0)

− PW0α. (4.17)

We now compute DαΛ(0, 0, 0) · α. Notice that by (4.13) we can write that

Λ(0, α, 0) =
d2Jξ(0)(u(α) +DV0v1(0, α) · u(α), u(α) +DV0v1(0, α) · u(α))
d2h(0)(u(α) +DV0v1(0, α) · u(α), u(α) +DV0v1(0, α) · u(α))

,

where u(α) := ψ−1
2 (s(0, α, 0)) ∈ V0. Consequently,

DαΛ(0, 0, 0) · α =
2d2Jξ(0)(Dαu(0) · α+D2

V0,α
v1(0, 0) · (u0, α), u0)d2h(0)(u0, u0)

(d2h(0)(u0, u0))2

−
2d2h(0)(Dαu(0) · α+D2

V0,α
v1(0, 0) · (u0, α), u0)d2Jξ(0)(u0, u0)

(d2h(0)(u0, u0))2
.

Now, as u0 ∈ ker(d2(h − Jξ)(0)) we have that d2h(0)(Dαu(0) · α + D2
V0,α

v1(0, 0) · (u0, α), u0) =
d2Jξ(0)(Dαu(0) · α + D2

V0,α
v1(0, 0) · (u0, α), u0) and d2h(0)(u0, u0) = d2Jξ(0)(u0, u0) which substi-

tuted in the previous expression implies that DαΛ(0, 0, 0) = 0. Therefore, if in (4.17) we take α = ξ
obtain that Dαg(0, 0, 0) = −1 and hence the Implicit Function Theorem guarantees the existence of a
function λ : R×W1 × Rξ → R such that λ(0, 0, 0) = 0 and

g(r, λ(r, ν, w0)ξ + ν, w0) = PW0E(r, λ(r, ν, w0)ξ + ν, w0 + ρ(r, λ(r, ν, w0)ξ + ν, w0)) ≡ 0.

Finally, the triple (r, λ(r, ν, w0)ξ+ν, w0 +ρ(r, λ(r, ν, w0)ξ+ν, w0)) is such that E(r, λ(r, ν, w0)ξ+ν, w0 +
ρ(r, λ(r, ν, w0)ξ+ ν, w0)) = 0 which gives the statement of the lemma for small values of (r, ν, w0), since
Λ(0, 0, 0) = 1. �
Step 9: Closing Arguments. By the linearity of the mapping Jβα in β, expression (4.10) can be

rewritten as dJ
ξ+β

Λ(r,α,β)
α (v0(r, α, β)) = dHα(v0(r, α, β)). If we follow the path in the space of param-

eters (r, α, β) given by the functions introduced in Lemma 4.5, that is, (r, α(r, ν, w0), β(r, ν, w0)) :=
(r, λ(r, ν, w0)ξ + ν, w0 + ρ(r, λ(r, ν, w0)ξ + ν, w0)), the above expression becomes

dJξ(1+λ(r,ν,w0))+ν
α (v0(r, α(r, ν, w0), β(r, ν, w0))) = dHα(v0(r, α(r, ν, w0), β(r, ν, w0))),

or equivalently

∇V0(h− Jξ(1+λ(r,ν,w0))+ν)(v0(r, α(r, ν, w0), β(r, ν, w0)) + v1(v0(r, α(r, ν, w0), β(r, ν, w0)), α)) = 0.
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In other words, the pair (v0(r, α(r, ν, w0), β(r, ν, w0)), λ(r, ν, w0)ξ + ν) solves the reduced equation
B(v0(r, α(r, ν, w0), β(r, ν, w0)), λ(r, ν, w0)ξ + ν) = 0, which implies that the point

v0(r, α(r, ν, w0), β(r, ν, w0)) + v1(v0(r, α(r, ν, w0), β(r, ν, w0)), λ(r, ν, w0)ξ + ν) ∈ V (4.18)

is a relative equilibrium of the Hamiltonian vector field Xh with velocity ξ + λ(r, ν, w0)ξ + ν.
In order to conclude the proof we just need to show that the number of branches predicted in (4.9)

coincides with the estimate in the statement of the theorem. Indeed, given that the G–Lusternik–
Schnirelman category takes integer values and the function Hα depends smoothly on α, we have that
for α small enough CatGξ

(
H−1
α (ε)

)
= CatGξ

(
H−1

0 (ε)
)
. The equivariant Morse Lemma, the topologically

invariant character of the Lusternik–Schnirelman category, and (4.6) give us that

CatGξ
(
H−1

0 (ε)
)

= CatGξ
(
Q−1(ε)

)
= CatGξ

(
h|−1
V0

(ε)
)
, (4.19)

where Q = d2h|V0(0). The smoothness of all the functions in (4.18) implies that the relative equilibria
whose existence is predicted in the statement of the theorem come in smooth branches when the energy
is varied. �

5 Examples

In this section we illustrate the implementation of Theorem 4.1 with elementary examples that make
explicit the procedure suggested by the statement of that result for the study of relative equilibria
around symmetric equilibria.

5.1 Nonlinearly perturbed spherical pendulum

As it is well known, the spherical pendulum consists of a particle of mass m, moving under the action
of a constant gravitational field of acceleration g, on the surface of a sphere of radius l. This system
exhibits a circular symmetry obtained when it is rotated around the axis of gravity. The straight down
position of the pendulum is a stable equilibrium of the system that is surrounded on each neighboring
energy level set by a relative equilibrium. In this example we will use the theorem in the previous
section to predict these relative equilibria as well as to show that they arise in the presence of any
S1–invariant nonlinear Hamiltonian perturbation of the system.

If we use as local coordinates of the configuration space around the downright position the Cartesian
coordinates (x, y) of the orthogonal the projection of the sphere on the equatorial plane, the (local)
Hamiltonian of this system is:

h(x, y, px, py) =
p2x
2m

+
p2y
2m
− (xpx + ypy)2

2ml2
−mg

√
l2 − x2 − y2 + ϕ(x2 + y2, p2x + p2y, xpx + ypy),

where the function ϕ is of order two or higher in all of its variables and encodes the nonlinear per-
turbation. This system is invariant with respect to the globally Hamiltonian S1–action given by the
expression Φθ(x, y, px, py) = (Rθ(x, y), Rθ(px, py)), where Rθ denotes a rotation of angle θ. The mo-
mentum map J : R4 → R associated to this action is given by J(x, y, px, py) = xpy − ypx. The point
(x, y, px, py) = (0, 0, 0, 0) is an equilibrium of the Hamiltonian vector field Xh to which we will apply
Theorem 4.1.

Firstly, if ξ ∈ R is arbitrary, then

d2(h− Jξ)(0) =


gm
l 0 0 −ξ
0 gm

l ξ 0
0 ξ 1

m 0
−ξ 0 0 1

m

 .

Secondly, it is easy to see that det(d2(h−Jξ)(0)) = 0 iff ξ = ±
√
g/l. In what follows we will show that

on any energy level surrounding the equilibrium there are always two relative equilibria whose velocities
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are approximately ±
√
g/l. We will carry out the computations for ω :=

√
g/l. The negative case

is completely analogous. It can be verified that V ω
0 = span{(1, 0, 0,mω), (0, 1,−mω, 0)}, which has a

S1–invariant complement V ω
1 given by V ω

1 = span{(0, 0, 1, 0), (0, 0, 0, 1)}. We now verify the hypotheses
of Theorem 4.1 by writing matricial expression of d2h(0)|V0 using the bases of V ω

0 and V ω
1 just given.

Indeed,

d2h(0)|V0 =
(

gm
l +mω2 0

0 gm
l +mω2

)
which is a positive definite matrix. Let Q be the associated quadratic form. Now, since

Φθ|V ω0 =
(

cos θ − sin θ
sin θ cos θ

)
,

the S1–action on the circlesQ−1(ε) is transitive which forces the functions j defined on it to be necessarily
equivariant Morse. Therefore, Theorem 4.1 implies the existence of the relative equilibria that we were
looking for.

5.2 Coupled oscillators subjected to a magnetic field

The following example provides a situation with higher symmetry than the previous one. We consider
the system formed by two identical particles with unit charge and mass m in the XY -plane, subjected to
identical attractive harmonic forces, to a homogeneous magnetic field perpendicular in direction to the
plane of motionXY , and to an interaction potential that that will preserve a certain group of symmetries.
We will denote by (q1, q2) the coordinates of the configuration space of the first particle and by (q3, q4)
those of the second one. If the magnetic field is induced by the vector potential A(x, y, z) = γ(−y, x, 0),
the Hamiltonian function associated to this system is

h(q,p) =
1

2m
(p21 + p22 + p23 + p24) +

(
γ2

2m
+
k

2

)
(q21 + q22 + q23 + q24)

+
γ

m
(p1q2 − p2q1) +

γ

m
(p3q4 − p4q3) + f(π1, π2, π3, π4), (5.1)

where k is a positive constant, π1 = q21 +q22 +q23 +q24 , π2 = p21+p22+p23+p24, π3 = p1q1+p2q2+p3q3+p4q4,
π4 = p1q2 − p2q1 + p3q4 − p4q3, and f is a function whose order is higher or equal than two in all of
its variables. The term involving the function f expresses a non linear interaction between the two
particles.

We now study the symmetries of the system. Note that after the assumptions on the interaction
function f , the system is invariant under the canonical toral action given by the lifted action to the
phase space of R : T2 × R4 → R

4, where

R((φ, ψ),q) =


cos(φ) cos(ψ) − cos(ψ) sin(φ) − cos(φ) sin(ψ) sin(φ) sin(ψ)
cos(ψ) sin(φ) cos(φ) cos(ψ) − sin(φ) sin(ψ) − cos(φ) sin(ψ)
cos(φ) sin(ψ) − sin(φ) sin(ψ) cos(φ) cos(ψ) − cos(ψ) sin(φ)
sin(φ) sin(ψ) cos(φ) sin(ψ) cos(ψ) sin(φ) cos(φ) cos(ψ)

q.

and q = (q1, q3, q2, q4). The system is also invariant under the transformation τ · (q1, q2, q3, q4) :=
(q1, q2,−q3,−q4). The commutation properties of R with the transformation given by τ make our
system O(2) × S1–invariant. The momentum map J : R8 → R

2 associated to the toral action is given
by the expression J(q,p) = (p2q1 − q2p1 − p3q4 + p4q3, p3q1 − q3p1 − p2q4 + p4q2).

This system has, for all values of the parameters γ and k, an equilibrium at the point (q1, q2, q3, q4, p1, p2, p3, p4) =
(0,0). We shall use the method described in Theorem 4.1 in order to find the bifurcating relative equi-
libria from this equilibrium. Firstly, we find in our particular situation the roots (ξ1, ξ2) ∈ R2 of
equation (4.1), that is,

0 = det
(
d2

(
h− J(ξ1,ξ2)

)
(0,0)

)
=

1
m4

[
k2 + (ξ21 − ξ22)(4γ2 + 4mγξ1 +m2(ξ21 − ξ22))− 2k(2γξ1 +m(ξ21 + ξ22))

]2
,
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which is equivalent to, m2ξ42 − 2[(km+ γ2) + (mξ1 + γ)2]ξ22 + (mξ1 + 2γξ1 − k)2 = 0.
An analysis of this expression shows that the roots of this equation are given by the pairs (ξ1, ξ2)

that satisfy any of the four following equalities:

ξ2 = ± 1
m
|ξ1m+ γ| ±

√
γ2 + km
m

. (5.2)

We now compute the reduced spaces (the spaces V0 in the notation of Theorem 4.1) associated to the
velocities that satisfy (5.2). A detailed study shows that these reduced spaces can be either four or two
dimensional. The four dimensional cases correspond to the velocities {r+1 , r−1 , r+2 , r−2 } with corresponding
reduced subspaces {V 1+

0 , V 1−
0 , V 2+

0 , V 2−
0 } given by

r±1 =

(
−γ ±

√
km+ γ2

m
, 0

)
, (5.3)

r±2 =

(
−γ
m
,±

√
km+ γ2

m

)
, (5.4)

V 1±
0 = span

{(
0, 0,

±1√
km+ γ2

, 0, 0, 0, 0, 1

)
,

(
0, 0, 0,

∓1√
km+ γ2

, 0, 0, 1, 0

)
,(

±1√
km+ γ2

, 0, 0, 0, 0, 1, 0, 0

)
,

(
0,

∓1√
km+ γ2

, 0, 0, 1, 0, 0, 0

)}
(5.5)

V 2±
0 = span

{(
0,

±1√
km+ γ2

, 0, 0, 0, 0, 0, 1

)
,

(
±1√
km+ γ2

, 0, 0, 0, 0, 0, 1, 0

)
,(

0, 0, 0,
∓1√
km+ γ2

, 0, 1, 0, 0

)
,

(
0, 0,

∓1√
km+ γ2

, 0, 1, 0, 0, 0

)}
. (5.6)

The two dimensional subspaces correspond to the four one dimensional parameter families of velocities
given by

r±3 (ξ1) =

(
ξ1,±

(
1
m
|ξ1m+ γ|+

√
γ2 + km
m

))
, ξ1 ∈ R \

{
−γ ±

√
km+ γ2

m
,
−γ
m

}
, (5.7)

r±4 (ξ1) =

(
ξ1,±

(
1
m
|ξ1m+ γ| −

√
γ2 + km
m

))
, ξ1 ∈ R \

{
−γ ±

√
km+ γ2

m
,
−γ
m

}
. (5.8)

The associated reduced spaces, that surprisingly do not depend on the parameter ξ1, are given by:

V 3±
0 = span

{(
0,

±1√
km+ γ2

,
−1√
km+ γ2

, 0,±1, 0, 0, 1

)
,

(
±1√
km+ γ2

, 0, 0,
1√

km+ γ2
, 0,∓1, 1, 0

)}
,

(5.9)

V 4±
0 = span

{(
0,

∓1√
km+ γ2

,
1√

km+ γ2
, 0,±1, 0, 0, 1

)
,

(
∓1√
km+ γ2

, 0, 0,
−1√
km+ γ2

, 0,∓1, 1, 0

)}
.

(5.10)
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The quadratic forms Qi defined as the restrictions Qi := d2h(0,0)|V i0 are given by the expressions:

Q1± =
2(km+ γ(γ ∓

√
km+ γ2))

m(km+ γ2)
I4,

Q2± =
2
m


1 0 0 γ√

km+γ2

0 1 −γ√
km+γ2

0

0 −γ√
km+γ2

1 0
γ√

km+γ2
0 0 1

 ,

Q3± =
4(km+ γ(γ +

√
km+ γ2))

m(km+ γ2)
I2,

Q4± =
4(km+ γ(γ −

√
km+ γ2))

m(km+ γ2)
I2.

The forms Q1±, Q3±, and Q4± are clearly definite and Q2± has as eigenvalues the quantities

2(km+ γ(γ ±
√
km+ γ2))

m(km+ γ2)

which are always non zero. Hence, Q2± is also definite.
The restriction R|V i0 of the toral action to the reduced spaces {V 1+

0 , V 1−
0 , V 2+

0 , V 2−
0 } always has the

same matricial expression if we use as bases the vectors introduced in (5.5) and (5.6), namely,

(
1 +

1
km+ γ2

) 
cos(φ) cos(ψ) cos(ψ) sin(φ) cos(φ) sin(ψ) sin(φ) sin(ψ)
− cos(ψ) sin(φ) cos(φ) cos(ψ) − sin(φ) sin(ψ) cos(φ) sin(ψ)
− cos(φ) sin(ψ) − sin(φ) sin(ψ) cos(φ) cos(ψ) cos(ψ) sin(φ)

sin(φ) sin(ψ) − cos(φ) sin(ψ) − cos(ψ) sin(φ) cos(φ) cos(ψ)

 .

It can be checked that the eigenvalues of this matrix are given by(
1 + km+ γ2

km+ γ2

)
(cos(φ± ψ) + i sin(φ± ψ)) and

(
1 + km+ γ2

km+ γ2

)
(cos(φ± ψ)− i sin(φ± ψ)) ,

which proves that

(V 1±
0 )T

2
= (V 2±

0 )T
2

= {0}. (5.11)

Additionally,

R(φ,ψ)|V 3±
0

= R(φ,ψ)|V 4±
0

=
2(1 + km+ γ2)
km+ γ2

(
cos(φ∓ ψ) sin(φ∓ ψ)
− sin(φ∓ ψ) cos(φ∓ ψ)

)
,

which shows that

(V 3±
0 )T

2
= (V 4±

0 )T
2

= {0}, (5.12)

that is, the restriction of the toral action to the reduced spaces {V 1±
0 , V 2±

0 , , V 3±
0 , V 4±

0 } has trivial fixed
point subspaces.

Finally, it can be verified in a straightforward manner that the restrictions of the quadratic forms
d2Jr

±
i (0) to the spheres Q−1

i± (ε) are S1 × S1–Morse functions with respect to the S1 × S1–action.
Consequently, expressions (5.11) and (5.12) imply that we can use Theorem 4.1 to conclude that for
each energy level of the system neighboring the origin (0,0) there exist:

(i) Eight distinct relative equilibria with respect to the O(2)× S1 symmetry of the problem
that are grouped in four couples; the velocities of the relative equilibria in each couple
approach those given by the roots {r+1 , r−1 , r+2 , r−2 } as the energy tends to zero.
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(ii) Four distinct one parameter families of relative equilibria whose velocities approach
those given by the roots {r+3 (ξ1), r−3 (ξ1), r+4 (ξ1), r−4 (ξ1)} as the energy tends to zero. The

parameter ξ1 runs over R \
{
−γ±
√
km+γ2

m , −γm

}
.

6 The MGS normal form and the reconstruction equations

In Section 7 we will use the preceding theorems to study the existence of relative equilibria for a
Hamiltonian symmetric system in the neighboring energy levels of a stable relative equilibrium that is
not an equilibrium. The treatment of this problem requires some knowledge of the local geometry and
dynamics in symmetric symplectic manifolds, that we will briefly review in this section.

Since this topic has already been introduced in many other papers we will just briefly sketch the
results that we will need in our exposition and will leave the reader interested in the details consult
the original papers [Mar85, GS84]. Regarding the reconstruction equations the reader is encouraged to
check with [O98, RWL99, OR03].

Throughout this section we will work with a G–Hamiltonian system (M,ω, h,G,J), where the Lie
group G acts in a proper and globally Hamiltonian fashion on the manifold M and the momentum map
J : M → g∗ is assumed to be coadjoint equivariant. Let m be a point in M such that J(m) = µ ∈ g∗

and Gm denotes the isotropy subgroup of the point m. We denote by gµ the Lie algebra of the stabilizer
Gµ of µ ∈ g∗ under the coadjoint action of G on g∗. We now choose in kerTmJ a Gm–invariant inner
product, 〈·, ·〉, always available by the compactness of Gm. Using this inner product we define the
symplectic normal space Vm at m ∈ M with respect to the inner product 〈·, ·〉, as the orthogonal
complement of Tm(Gµ ·m) in kerTmJ, that is, kerTmJ = Tm(Gµ ·m)⊕Vm, where the symbol ⊕ denotes
orthogonal direct sum. It is easy to verify that (Vm, ω(m)|Vm) is a Gm–invariant symplectic vector
space.

Recall that by the equivariance of J, the isotropy subgroup Gm of m is a subgroup of Gµ and
therefore gm = Lie(Gm) ⊂ gµ. Using again the compactness of Gm, we construct an inner product
〈·, ·〉 on g, invariant under the restriction to Gm of the adjoint action of G on g. Relative to this inner
product we can write the following orthogonal direct sum decompositions g = gµ⊕ q, and gµ = gm⊕m,
for some subspaces q ⊂ g and m ⊂ gµ. The inner product also allows us to identify all these Lie algebras
with their duals. In particular, we have the dual orthogonal direct sums g∗ = g∗µ⊕q∗ and g∗µ = g∗m⊕m∗

which allow us to consider g∗µ as a subspace of g∗ and, similarly, g∗m and m∗ as subspaces of g∗µ.
The Gm–invariance of the inner product utilized to construct the splittings gµ = gm ⊕ m and

g∗µ = g∗m ⊕ m∗, implies that both m and m∗ are Gm–spaces using the restriction to them of the Gm–
adjoint and coadjoint actions, respectively.

The importance of all these objects is in the fact that there is a positive number r > 0 such that,
denoting by m∗r the open ball of radius r relative to the Gm–invariant inner product on m∗, the manifold
Yr := G×Gm (m∗r × Vm) can be endowed with a symplectic structure ωYr with respect to which the left
G–action g · [h, η, v] = [gh, η, v] on Yr is globally Hamiltonian with Ad∗–equivariant momentum map
JYr : Yr → g∗ given by JYr ([g, ρ, v]) = Ad∗g−1 · (µ + ρ + JVm(v)). Moreover, there exist G–invariant
neighborhoods U of m in M , U ′ of [e, 0, 0] in Yr, and an equivariant symplectomorphism φ : U → U ′

satisfying φ(m) = [e, 0, 0] and JYr ◦ φ = J. On other words, the twisted product Yr can be used as
a coordinate system in a tubular neighborhood of the orbit G · m. This semi–global coordinates are
referred to as the MGS (Marle–Guillemin–Sternberg) normal form.

In what follows we will use the MGS coordinates to compute the equations that describe the dynamics
induced by the Hamiltonian vector field corresponding to a G–invariant Hamiltonian. These are called
the reconstruction [O98] or the bundle [RWL99] equations. Let h ∈ C∞(Y )G be a G–invariant
Hamiltonian on Y . Our aim is to compute the differential equations that determine the G–equivariant
Hamiltonian vector field Xh ∈ X(Y ) associated to h and characterized by iXhωY = dh.

Since the projection π : G×m∗×Vm → G×Gm (m∗×Vm) is a surjective submersion, there are always
local sections available that we can use to locally express Xh = Tπ(XG, Xm∗ , XVm), with XG, Xm∗ and
XVm locally defined smooth maps on Y and having values in TG, Tm∗ and TVm respectively. Thus,
for any [g, ρ, v] ∈ Y , one has XG([g, ρ, v]) ∈ TgG, Xm∗([g, ρ, v]) ∈ Tρm∗ = m∗, and XVm([g, ρ, v]) ∈
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TvVm = Vm. Moreover, using the AdGm–invariant decomposition of the Lie algebra g: g = gm ⊕ m ⊕
q, the mapping XG can be written, for any [g, ρ, v] ∈ Y , as XG([g, ρ, v]) = TeLg

(
Xgm([g, ρ, v]) +

Xm([g, ρ, v]) + Xq([g, ρ, v])
)
, with Xgm , Xm, and Xq, locally defined smooth maps on Y with values

in gm, m, and q respectively. Also, note that since h ∈ C∞(G ×Gm (m∗ × Vm))G is G–invariant, the
mapping h◦π ∈ C∞(G×m∗×Vm)Gm can be understood as a Gm–invariant function that depends only
on the m∗ and Vm variables, that is, h ◦ π ∈ C∞(m∗ × Vm)Gm .

Using these ideas and the explicit expression of the symplectic form ωYr we can explicitly write down
the differential equations that determine the components of Xh:

Xgm = 0 (6.1)
Xq = ψ(ρ, v) (6.2)

Xm = Dm∗(h ◦ π) (6.3)

XVm = B+
Vm

(DVm(h ◦ π)) (6.4)

Xm∗ = Pm∗

(
ad∗Dm∗ (h◦π)ρ+ ad∗Dm∗ (h◦π)JVm(v) + ad∗ψ(ρ,v)(ρ+ JVm(v))

)
. (6.5)

Remark 6.1 The previous equations admit severe simplifications in the presence of various Lie alge-
braic hypotheses. See [RWL99] for an extensive study. For future reference we will note two particularly
important cases:

• The Lie algebra g is Abelian: in that case Xm∗ = Xq = 0 at any point.

• The point µ ∈ g∗ is split [GLS96], that is, the Lie algebra gµ of the coadjoint isotropy of µ admits
a AdGµ–invariant complement in g: in that case the mappings η and ψ are identically zero. �

Remark 6.2 The MGS normal form and the reconstruction equations justify why the decision in the-
orems 3.1 and 4.1 to work with symplectic vector spaces did not imply any loss of generality. Indeed,
if in a G–Hamiltonian manifold we have an equilibrium m ∈ M whose isotropy subgroup is G, we can
locally describe this space around m as G×GVm � Vm. In such a situation, the reconstruction equations
imply that knowing the dynamics on the G–symplectic vector space Vm, governed by Hamilton’s equa-
tions (6.4), is enough to know the dynamics on G×G Vm and, therefore, the dynamics in a G–invariant
neighborhood around m ∈M . Since theorems 3.1 and 4.1 are local, the claim follows. �

7 Relative equilibria around a stable relative equilibrium

Our aim in this section is to generalize to relative equilibria, with the help of the MGS normal form and
the reconstruction equations, the results that in sections 3 and 4 were proved for equilibria. We start
with the generalization of Theorem 3.1. The setup and the notation that will be used coincides with
the one introduced in the previous section.

Theorem 7.1 Let (M,ω, h,G,J) be a Hamiltonian G–space, where the G–action on M is proper and
the momentum map J : M → g∗ is coadjoint equivariant. Let m ∈ M be a relative equilibrium of this
system with velocity ξ ∈ g, such that H := Gm, J(m) = µ ∈ g∗, and h(m) = 0. Let Vm ⊂ TmM be any
symplectic normal space through the point m. Suppose that for Vm (and hence for any other symplectic
normal space) the following hypotheses are satisfied:

(i) d2
(
h− JPmξ

)
(m)|Vm is a definite quadratic form.

(ii) d2
(
JPhξ

)
(m)|Vm is a non degenerate quadratic form.

(iii) One of the following hypotheses holds:
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1. The Lie algebra g is Abelian.

2. The Lie algebra gµ is Abelian and µ is split.

3. h = gµ.

Then for each ε ∈ R small enough there are at least

CatHPhξ
(
Q−1(ε)

)
, with Q(v) = d2

(
h− JPmξ

)
(m)(v, v), v ∈ Vm (7.1)

HPhξ–distinct relative equilibria in h−1(ε) with velocities of the form η + λPhξ, with η ∈ m ⊕ q and
λ ∈ R. The symbol HPhξ denotes the adjoint isotropy of the element Phξ ∈ h in H, and CatHPhξ
the HPhξ–Lusternik–Schnirelman category. The projections Ph and Pm are given by the AdH–invariant
splitting g = h⊕m⊕ q of the Lie algebra g.

Remark 7.2 The word stable in the title of this section is justified by the fact that condition (i) in
the statement of Theorem 7.1, along with the existence of a Gµ–invariant inner product on g∗, with
µ = J(m), is a sufficient condition [Pat92, LS98, O98, OR99] for the so called Gµ–stability of the relative
equilibrium m ∈M . �

Remark 7.3 The assumption of coadjoint equivariance of the momentum map in Section 6 and in
Theorem 7.1 is not essential and was used for ease of exposition. If the manifold M is connected a non
equivariance group one–cocycle can be defined for the momentum map. The momentum map is then
equivariant with respect to the corresponding affine action (see for instance [AM78, OR03]) and all the
above arguments can be easily adapted to this case to obtain the same result. �

Proof The Hessians in the statement are clearly well defined and the hypotheses on them do not
depend on the choice of symplectic normal space Vm. Given the local nature of the statement, we
can use the MGS coordinates to carry out the proof of the theorem. For simplicity in the exposition
we will identify points and maps in M and their counterparts in the MGS coordinates Y . Those
coordinates can be chosen so that the point m is represented by [e, 0, 0] ∈ G ×H (m∗ × Vm) and the
subset Σm := {e} ×H ({0} × Vm) ⊂ Y is a symplectic slice through m.

We now verify that TmΣm is a symplectic normal space atm, that is, kerTmJ = TmΣm⊕Tm(Gµ ·m).
Indeed, since the canonical projection π : G×m∗×Vm −→ G×Gm (m∗×Vm) is a surjective submersion,
it follows that any vector v ∈ TmM can be written as v = T(e,0,0)π(σ, η, w), with some σ ∈ g, η ∈ m∗,
and w ∈ Vm. In particular, the vectors in TmΣm have the form T(e,0,0)π(0, 0, w) with w ∈ Vm, and
those in Tm(Gµ · m) look like T(e,0,0)π(η, 0, 0), with η ∈ gµ. This immediately implies that TmΣm ∩
Tm(Gµ ·m) = {0}. At the same time, the equivariance of J implies that Tm(Gµ ·m) ⊂ kerTmJ and
since for any T(e,0,0)π(0, 0, w) ∈ TmΣm, we have TmJ(T(e,0,0)π(0, 0, w)) = T0JVm ·w = 0, it follows that
TmΣm ⊂ kerTmJ. A dimension count shows then that kerTmJ = TmΣm ⊕ Tm(Gµ ·m), as predicted.

Notice that in MGS coordinates the point m ≡ [e, 0, 0] is a relative equilibrium of the Hamiltonian
vector field Xh with velocity ξ when

Xh(m) = T(e,0,0)π(ξ, 0, 0). (7.2)

The associated flow is given by Ft(m) = [exp tξ, 0, 0].
We now define the function hVm ∈ C∞(Vm)H by hVm(v) = (h ◦ π)(0, v), for each v ∈ Vm (as we

already said when we introduced the reconstruction equations, a G–invariant Hamiltonian in MGS co-
ordinates can be considered as a H–invariant function on m∗×Vm). Moreover, notice that by (7.2) and
the reconstruction equation (6.4) we have that dhVm(0) = DVm(h ◦ π)(0, 0) = B.

Vm
(XVm(0, 0, 0)) = 0,

where BVm ∈ Λ2(Vm × Vm) is the Poisson tensor associated to the symplectic form ωVm := ω|Vm
and B.

Vm
: Vm → Vm is the associated linear map. Also, for any v, w ∈ Vm we have that d2(h −

JPmξ)([e, 0, 0])(T(e,0,0)π(0, 0, v), T(e,0,0)π(0, 0, w)) = d
dt

∣∣
t=0

d
ds

∣∣
s=0

(h−JPmξ)([e, 0, tv+sw]) = d2hVm(0)(v, w)−
d
dt

∣∣
t=0
〈TtvJVm · w,Pmξ〉 = d2hVm(0)(v, w), since TtvJVm · w ∈ h∗ for any t. Therefore, hypothe-

sis (i) implies that d2hVm(0) is a definite quadratic form. Analogously, we can show that for any
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v, w ∈ Vm d2(JPhξ)([e, 0, 0])(T(e,0,0)π(0, 0, v), T(e,0,0)π(0, 0, w)) = d
dt

∣∣
t=0

d
ds

∣∣
s=0

(JPhξ)([e, 0, tv + sw]) =

d2JPhξ
Vm

(0)(v, w), which by hypothesis (ii) implies that d2JPhξ
Vm

(0) is a nondegenerate quadratic form.
If we now apply Theorem 3.1 to the equilibrium that the system (Vm, ωVm , hVm , H,JVm) has at the

origin we obtain at least

CatHPhξ
(
Q−1(ε)

)
, with Q(v) = d2hVm(0)(v, v) = d2

(
h− JPmξ

)
(m)(v, v), v ∈ Vm (7.3)

H–relative equilibria for that system whose velocities are a real multiple of Phξ.
In the rest of the proof we will see that the hypotheses in the assumption (iii) of the statement allow

us to use these H–relative equilibria to construct G–relative equilibria of the original system. Suppose
that we are in the first two cases considered in the hypothesis (iii), that is, either gµ is Abelian and µ
split or g is Abelian. Having in mind what we said in Remark 6.1 and the reconstruction equation (6.5),
we realize that Xm∗ = 0 at any point and therefore if v ∈ Vm is one of the H–relative equilibria of
(Vm, ωVm , hVm , H,JVm) predicted by (7.3), the point [e, 0, v] is necessarily a G–relative equilibrium of
the original system.

Finally, if h = gµ, then m = 0 necessarily and therefore all the points of the form [e, v], with v ∈ Vm,
one of the H–relative equilibria predicted by (7.3), are G–relative equilibria of the original system. �

We finish with the generalization to relative equilibria of Theorem 4.1.

Theorem 7.4 Let (M,ω, h,G,J) be a Hamiltonian G–space. Let m ∈ M be a relative equilibrium of
this system with velocity ξ ∈ g, such that H := Gm, J(m) = µ ∈ g∗, and h(m) = 0. Let Vm ⊂ TmM be
any symplectic normal space through the point m. Let η ∈ h be a root of the polynomial equation:

det
(
d2

(
h− JPmξ+η

)
(m)|Vm

)
= 0.

Define the subspace V0 ⊂ Vm by

V0 := ker
(
d2

(
h− JPmξ+η

)
(m)|Vm

)
.

Suppose that the following hypotheses are satisfied:

(i) d2
(
h− JPmξ

)
(m)|V0 is a definite quadratic form.

(ii) Let Q(v) := d2
(
h− JPmξ

)
(m)(v, v), v ∈ V0, ‖ · ‖ be the norm on V0 associated to Q, l = dimV0,

and Sl−1 be the unit sphere in V0 defined by the norm ‖ · ‖. The function jη ∈ C∞(Sl−1) defined
by jη(u) := 1

2d
2Jη(0)(u, u), is Hη–Morse with respect to the Hη–action on Sl−1.

(iii) One of the following hypotheses holds:

1. The Lie algebra g is Abelian.
2. The Lie algebra gµ is Abelian and µ is split.
3. h = gµ.

Then for each ε ∈ R small enough there are at least

CatHη

(
Q−1(ε)

)
(7.4)

Hη–distinct relative equilibria in h−1(ε). The velocities of these relative equilibria are close to Pmξ + η.
The symbol Hη denotes the adjoint isotropy of the element η ∈ h in H and CatHη the Hη–Lusternik–
Schnirelman category. The projection Pm is given by the AdH–invariant splitting g = h⊕ m⊕ q of the
Lie algebra g.

Proof It suffices to reproduce the modus operandi followed in the proof of Theorem 7.1, this time
invoking Theorem 4.1 once the H–invariant Hamiltonian dynamical system (Vm, ωVm , hVm) has been
constructed and the hypotheses in the statement have been used. �
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