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Abstract

An estimate on the number of distinct relative periodic orbits around a stable relative equilibrium
in a Hamiltonian system with continuous symmetry is given. This result constitutes a generalization
to the Hamiltonian symmetric framework of a classical result by Weinstein and Moser on the exis-
tence of periodic orbits in the energy levels surrounding a stable equilibrium.The estimate obtained
is very precise in the sense that it provides a lower bound for the number of relative periodic orbits
at each prescribed energy and momentum values neighboring the stable relative equilibrium in ques-
tion and with any prefixed (spatiotemporal) isotropy subgroup. Moreover, it is easily computable
in particular examples. It is interesting to see how in our result the existence of non trivial relative
periodic orbits requires (generic) conditions on the higher order terms of the Taylor expansion of the
Hamiltonian function, in contrast with the purely quadratic requirements of the Weinstein–Moser
Theorem, which emphasizes the highly non linear character of the relatively periodic dynamical
objects.

1 Introduction

The search for periodic orbits around non hyperbolic equilibria of a Hamiltonian system has traditionally
been one of the main topics in classical mechanics. The best known results in this direction are due to
Liapounov [38] and Horn [26], who solved the non resonant case. The general case was solved only in
1973 by A. Weinstein who proved the following theorem [67]:

Theorem 1.1 (Weinstein) Let (M, ω, h) be a Hamiltonian system and let m ∈M be an equilibrium
of the associated Hamiltonian vector field Xh such that h(m) = 0 and the quadratic form d2h(m) is
definite. Then, for each sufficiently small positive ε, there are at least 1

2 dimM geometrically distinct
periodic orbits of energy ε.

Further extensions of this result due to J. Moser [51] justify why this theorem is usually referred to
as the Weinstein–Moser Theorem. Bartsch [7] has studied periodic orbits on the zero level set of the
Hamiltonian in Moser’s generalized version of the theorem. In the last two references, the definiteness
of the second variation of the Hamiltonian is not required in the total space but in a smaller subspace
called resonance space that will be defined later on in the paper.

In this paper we will be interested in Hamiltonian systems endowed with a continuous symmetry.
More specifically, Hamiltonian systems of the form (M, ω, G, J : M → g∗, h : M → R), where G is a Lie
group, with Lie algebra g, acting properly and canonically on the smooth symplectic manifold (M, ω),
that encodes the symmetries of the system. We will assume that the G–action admits an equivariant
momentum map J : M → g∗, where g∗ denotes the dual space of g, and that the Hamiltonian function
h is G–invariant (check for instance with [1] for an introduction to these notions). The generalization
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of Liapounov’s Theorem to the resonant case carried out in the Weinstein–Moser Theorem is of great
relevance in this setup since the invariance properties associated to symmetries induce resonances in
many occasions.

The Weinstein–Moser Theorem was adapted to this category by Montaldi et al [49] and later by
Bartsch [6], who obtained sharper estimates. Even though these authors worked in the symmetric
framework, their papers still dealt with the search of periodic orbits near elliptic equilibria. However, in
the presence of a continuous symmetry, the critical elements that generalize equilibria and periodic orbits
to this category are the so–called relative equilibria (RE) and relative periodic orbits (RPOs).
Recall that a relative equilibrium of the G–invariant Hamiltonian h is a point m ∈ M such that the
integral curve m(t) of the Hamiltonian vector field Xh starting at m equals exp(tξ) ·m for some ξ ∈ g,
where exp : g → G is the exponential map; any such ξ is called a velocity of the relative equilibrium.
Note that if m has a non–trivial isotropy subgroup, ξ is not uniquely determined. The point m ∈M is
said to be a relative periodic orbit of the G–invariant Hamiltonian h if there is a τ > 0 and an element
g ∈ G such that Ft+τ (m) = g ·Ft(m) for any t ∈ R, where Ft is the flow of the Hamiltonian vector field
Xh. The constant τ > 0 is called the relative period of m and the group element g ∈ G its phase
shift . For historical reasons, we will occasionally refer to the RPOs that we will find in this paper as
relative normal modes (we already did so in the title) given that these solutions generalize to the
symmetric context the normal modes or periodic orbits around equilibria provided by the Liapounov
Center Theorem and by the Weinstein–Moser estimates.

From the point of view of applications a theorem linking stable relative equilibria to the existence of
RPOs presents certain relevance since stable relative equilibria are known to appear profusely in most
common symmetric Hamiltonian systems: pendula and oscillators subjected to various interactions [42],
symmetric rigid bodies (free, in the presence gravity [37], or immersed in fluids [33, 34]), molecules [48],
point vortices in various phase spaces [39, 32], etc.

The search for relative equilibria around stable and unstable relative equilibria has been the object
of [56]. The simplest and most straightforward generalization of the Weinstein–Moser Theorem to the
symmetric context is obtained by using symplectic reduction [43]. If the point m ∈ M is such that
J(m) = µ is a regular value of the momentum map J and the coadjoint isotropy subgroup Gµ of µ ∈ g∗

acts freely and properly on the level set J−1(µ), then the quotient manifold J−1(µ)/Gµ is a symplectic
manifold and the dynamics of any G–invariant Hamiltonian on M drops naturally to Hamiltonian
dynamics on the reduced manifold J−1(µ)/Gµ. Moreover, REa and RPOs in M coincide with equilibria
and periodic orbits in the reduced space, respectively. Therefore, if m is a RE such that the Hessian
of the reduced Hamiltonian at the reduced equilibrium satisfies the hypothesis of the Weinstein–Moser
Theorem, then there are at least 1

2 dim(J−1(µ)/Gµ) geometrically distinct periodic orbits on each energy
level in this reduced space, that lift to as many geometrically distinct RPOs in M with momentum µ.
We emphasize that when in the symmetric context we talk about geometrically distinct objects we
mean that one cannot be obtained from the other by using the relevant group action in the problem.

One limitation of this method is that it only allows us to prove the existence of RPOs with the
same momentum as the stable relative equilibrium whose existence we use as hypothesis. Additionally,
if the regularity assumption on the point m is dropped in the previous paragraph, the reduced space
J−1(µ)/Gµ is not a manifold anymore but a Poisson variety in the sense of [4, 53], whose symplectic
leaves are the singular reduced spaces introduced by Sjamaar, Lerman, and Bates in [62, 8]. See
also [52, 55]. In principle, the procedure described in the previous paragraph can still be carried out
taking, instead of the entire reduced space, the smooth symplectic stratum that contains the reduced
equilibrium. The main inconvenience of this approach is the loss of information that the restriction
to the stratum implies. For instance, the stratum could reduce to a point, in which case the result
would be empty of content. However, even when the stratum that contains the relative equilibrium
is not trivial the use of the Weinstein–Moser Theorem in it does not give us any information on the
neighboring strata which, as we will see, contain non trivial relative periodic solutions. A first step in
overcoming these difficulties has been taken in [36] where a symplectic version of the Slice Theorem
due to Marle, Guillemin, and Sternberg is used to establish a relation between the RPOs around a
given stable relative equilibrium and the RPOs around the corresponding symmetric equilibrium in the
slice, always when certain hypotheses on the coadjoint isotropy of the momentum value of the relative
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equilibrium are satisfied. This procedure allows the application of the Weinstein–Moser Theorem on
the slice to produce RPOs of the original system. Nevertheless, this treatment is not optimal and when
the relative equilibrium is just an equilibrium, these theorems do not provide any information, as far as
RPOs is concerned. In our work we will take an approach inspired by the so called Smale Program [63]
that consists of analyzing the orbit spaces resulting from quotienting the level sets of the conserved
quantities in the system by the relevant group action. This strategy will provide results free from some
of the restrictions in [36] and containing easy to compute estimates on the number of RPOs around
a given stable relative equilibrium, classified by their energy, momentum value, and (spatiotemporal)
isotropy subgroups. The main results are contained in the following three theorems:

• Theorem 3.1: this result gives two different lower bounds for the number of RPOs with prescribed
energy, momentum, and isotropy group in a symmetric Hamiltonian system, neighboring a stable
equilibrium with total isotropy. The symmetry group is assumed to be compact. The estimates
provided are based on two different critical point theory tools: Lusternik–Schnirelman category
and Morse theory. The former provides an easy to compute dimensional estimate while the latter
is expressed in terms on an Euler characteristic with respect to equivariant cohomology that, even
though is more difficult to compute it is, in principle, sharper. This result improves the study
carried out in [36] since the main results regarding RPOs in those papers are empty of content
when dealing with an equilibrium with total isotropy.

• Theorem 3.13: it provides estimates on the number of RPOs similar to those in Theorem 3.1 but
this time, the predicted solutions have prescribed isotropy subgroup not only with respect to the
symmetry group G of the system (referred to as the group of spatial symmetries) but with
respect to the group G×S1 (group of spatiotemporal symmetries), where the circle symmetry
comes from putting the system in normal form. This symmetry, that in principle is not a feature
of the given system, is reflected in the spatio–temporal symmetry properties of the periods of the
solutions predicted by the theorem. Due to the techniques used in the proofs and the conclusions
obtained Theorem 3.13 is NOT a generalization of Theorem 3.1: in the proof of Theorem 3.1
intervenes a transversality argument that guarantees that all the solutions obtained are genuine
RPOs and not just relative equilibria (that could be considered as trivial RPOs). This conclusion
cannot be drawn from Theorem 3.13 given that the subgroups of G × S1 intertwine the G and
S1–actions via the temporal character (this terminology will be introduced later on) preventing
us from making the distinction between RPOs and relative equilibria (see Remark 3.17).

• Theorem 4.1: it generalizes Theorem 3.13 providing, under certain hypotheses, estimates on the
number of RPOs around a stable relative equilibrium.

The paper is organized as follows:

• In Section 2 we introduce some preliminary material with the purpose of fixing the notation and
of future reference. The expert can skip this section.

• In Section 3 we present the main results that provide an estimate on the number of RPOs sur-
rounding a given stable symmetric equilibrium at each prescribed energy and momentum values
neighboring the equilibrium, and with any prefixed spatial and spatiotemporal isotropy subgroup.

• In Section 4 we use the main results in the previous section and the so called reconstruction
equations in order to generalize them to an estimate on the number of RPOs around a genuine
stable RE.

2 Preliminaries

Throughout the paper we will work in the category of symmetric Hamiltonian spaces whose objects are
Hamiltonian systems with symmetry (M, ω, G, J : M → g∗, h : M → R). Here (M, ω) is a symplectic
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manifold on which the Lie group G, with Lie algebra g, acts properly, canonically, and, moreover, in a
globally Hamiltonian fashion, that is, it admits an equivariant momentum map J : M → g∗, where g∗

is the dual space of g. The Hamiltonian function h is always assumed to be G–invariant.

2.1 Proper actions, fixed point sets, slices, and normalizers.

The proofs of the facts stated below can be found in [9, 28, 57, 16]. The isotropy subgroups associated
to a proper action are always compact. Let K be a closed subgroup of G. The connected components
of the sets

MK = {z ∈M | K ⊆ Gz}
MK = {z ∈M | K = Gz}

are submanifolds of M . MK is an open submanifold of MK . MK is usually referred to as the set of
K–fixed points in M and MK as the submanifold of isotropy type K. If M is a symplectic manifold,
then (the connected components of) MK and MK are symplectic submanifolds of M . Proper actions are
important since they guarantee the existence of slices and tubular models: let m ∈ M and Gm be the
isotropy subgroup of the element m. The Slice Theorem guarantees the existence of a G–equivariant
isomorphism ϕ : G ×Gm B −→ U , where U is a G–invariant open neighborhood of the orbit G · m
such that ϕ[e, 0] = m, and where B is an open Gm–invariant neighborhood of 0 in the vector space
TmM/Tm(G ·m), on which Gm acts linearly by h · (v+ Tm(G ·m)) := TmΦh · v+ Tm(G ·m). The set S
defined as S := ϕ[e, B], is a (smooth) slice at m for the G–action on M .

Slices have very interesting properties. A feature that will be of particular interest interest to us
is the possibility of using the slice to locally coordinatize the G–space M around the orbit G · m by
means of a local cross–section of G/Gm. More specifically, a local cross–section σ of the homogeneous
space G/Gm is a differentiable map σ : Z → G, where Z is an open neighborhood of Gm in G/Gm
such that σ(Gm) = e and σ(z) ∈ z, for z ∈ Z. The Slice Theorem for proper actions of Palais [57,
propositions 2.1.2 and 2.1.4] guarantees that the map F : Z × S → M defined by F (z, s) := σ(z) · s,
is a diffeomorphism onto an open subset of M that contains m. In Section 4 we will briefly review a
symplectic version of this result.

We now suppose that the symplectic manifold M in question is a symplectic vector space (V, ω)
that constitutes a symplectic representation space of G then, the K–fixed point space V K is a sym-
plectic vector subspace of V . Recall that any symplectic representation is globally Hamiltonian with an
equivariant momentum map J : V → g∗ associated given by

〈J(v), ξ〉 =
1
2
ω(ξ · v, v), for any v ∈ V, ξ ∈ g.

The symbol ξ ·v denotes the infinitesimal generator at v associated to ξ ∈ g, and 〈·, ·〉 the natural pairing
between the Lie algebra g and its dual. Let now N(K) = {n ∈ G |nKn−1 = K} be the normalizer of K
in G. The globally Hamiltonian G–action on V induces globally Hamiltonian actions of L := N(K)/K
on VK and V K . Moreover, the L–action on VK is free. The momentum maps JLK : V K → l∗ and
JLK : VK → l∗ associated to these actions are given by

JLK (v) = Ξ∗(J(v)), JLK (v) = Ξ∗(J(v)),

where Ξ∗ : (k◦)K → l∗ is the natural N(K)/K–equivariant isomorphism (see [52, 55] for the details)
between the K–fixed points in the annihilator of h in g∗ and the dual of the Lie algebra l∗ of N(K)/K.

2.2 The resonance space and normal form reduction

Let (V, ω) be a symplectic vector space. It is easy to show that there is a bijection between linear
Hamiltonian vector fields on (V, ω) and quadratic forms on V . Indeed, if A : V → V is an infinitesimally
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symplectic linear map, that is, a linear Hamiltonian vector field on (V, ω), its corresponding Hamiltonian
function is given by

QA(v) :=
1
2
ω(Av, v), for any v ∈ V .

Also, since A belongs to the symplectic Lie algebra sp(V ), it admits a unique Jordan–Chevalley
decomposition [27, 66] of the form A = As +An, where As ∈ sp(V ) is semisimple (complex diagonal-
izable), An ∈ sp(V ) is nilpotent, and [As, An] = 0. If the quadratic form QA is definite, a theorem of
Krein [31, 50] guarantees that the associated linear Hamiltonian vector field A is semisimple (complex
diagonalizable) and that all its eigenvalues lie on the imaginary axis. Let iν◦ be one of the eigenvalues
of A and Tν◦ := 2π

ν◦
. We define the resonance space Uν◦ of A with primitive period Tν◦ as

Uν◦ := ker(eAsTν◦ − I).

The resonance space Uν◦ has the following properties (see [69, 19, 66]):

(i) Uν◦ is equal to the direct sum of the real generalized eigenspaces of A corresponding to eigenvalues
of the form ±ikν◦, with k ∈ N∗.

(ii) The pair (Uν◦ , ω|Uν◦ ) is a symplectic subspace of (V, ω).

(iii) The mapping θ ∈ S1 �→ e
θ
ν◦As |Uν◦ generates a symplectic S1 linear action on (Uν◦ , ω|Uν◦ ) with

associated momentum map JS1 : Uν◦ → R given by JS1 = 1
ν◦
QAs |Uν◦ .

(iv) If (V, ω) is a symplectic representation space of the Lie group G and the Hamiltonian vector
field A is G–equivariant (equivalently, the quadratic form QA is G–invariant), then the symplectic
resonance subspace (Uν◦ , ω|Uν◦ ) is alsoG–invariant (this follows from the uniqueness of the Jordan–
Chevalley decomposition of A, which implies that if A is G–equivariant, so is As). Moreover, the
S1 and G actions on (Uν◦ , ω|Uν◦ ) commute, which therefore defines a symplectic linear action of
G× S1 on Uν◦ .

(v) The normal form reduction [64, 65, 66] Let (V, ω, hλ) be a λ–parameter family (λ ∈ Λ, where
Λ is a Banach space) of smooth G–Hamiltonian systems such that for any λ ∈ Λ, hλ(0) = 0,
dhλ(0) = 0, and the G–equivariant infinitesimally symplectic linear map A := DXhλ◦ (0) is non
singular and has ±iν◦ as eigenvalues. Let (Uν◦ , ω|Uν◦ ) be the resonance space of A with primitive
period Tν◦ . Then, there exist smooth mappings ψ : Uν◦ × Λ → V and Ck+1–mapping ĥλ :
Uν◦ × Λ→ R such that ψ(0, λ) = 0, for all λ ∈ Λ, DUν◦ψ(0, λ◦) = IUν◦ (DUν◦ denotes the partial
Fréchet derivative relative to the variable in Uν◦), and, most importantly [65, Theorem V.5.17], [66,
Theorem 3.2], if we stay close enough to zero in Uν◦ and to λ◦ ∈ Λ, then the S1–relative equilibria
of the G× S1–invariant Hamiltonian ĥλ are mapped by ψ(·, λ) to the set of periodic solutions of
(V, ω, hλ) in a neighborhood of 0 ∈ V , with periods close to Tν◦ . Hence, in our future discussion
we will substitute the problem of searching periodic orbits for (V, ω, hλ) by that of searching
the S1–relative equilibria of the G×S1–invariant family of Hamiltonian systems (Uν◦ , ω|Uν◦ , ĥλ),
that will be referred to as the equivalent system. Given any k ∈ N, the equivalent system
Hamiltonian ĥλ can be chosen so that its Taylor expansion coincides with that of hλ|Uν◦ up to
order k. This fact and the properties of ψ imply that

A := A|Uν◦ = DVXhλ◦ (0)|Uν◦ = DUν◦Xhλ◦ |Uν◦ (0) = DUν◦Xĥλ◦
(0). (2.1)

The reduction procedure that we just described appears also in the literature under the name of
Weinstein–Moser reduction.
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2.3 Hamiltonian relative equilibria and relative periodic orbits

A point m ∈ M is a relative equilibrium of the Hamiltonian system with symmetry (M,ω, h,G,J),
with velocity ξ ∈ g, iff m is a critical point of the augmented Hamiltonian hξ := h − Jξ, where
Jξ := 〈J, ξ〉. A similar characterization for RPOs that also uses the momentum map is given in the
following elementary result.

Proposition 2.1 Let (M, ω, h) be a Hamiltonian system with a globally Hamiltonian symmetry given
by the canonical action of the Lie group G on M , with associated momentum map J : M → g∗. If the
Hamiltonian vector field Xh−Jξ , ξ ∈ h, has a periodic point m ∈ M with period τ , then the point m is
a RPO of Xh with relative period τ and phase shift exp τξ.

Proof Let Ft be the flow of the Hamiltonian vector field Xh and Kt(m) = exp tξ ·m that of XJξ . By
Noether’s Theorem we have that [Xh, XJξ ] = −X{h,Jξ} = 0, where the bracket {·, ·} denotes the Poisson
bracket associated to the symplectic form ω. Due to this equality, we can write (see for instance [2, Corol-
lary 4.1.27]) the following expression for Gt, the flow of Xh−Jξ , Gt(m) = limn→∞(Ft/n ◦K−t/n)n(m) =
(K−t ◦ Ft)(m) = exp −tξ · Ft(m). Since by hypothesis the point m is periodic for Gt with period τ , we
have that m = exp −τξ · Fτ (m), or, equivalently, Fτ (m) = exp τξ ·m, as required. �

The proposition that we just proved allows us to search for RPOs of the system (M,ω, h,G,J) by
searching the periodic orbits of the systems with Hamiltonian function the augmented Hamiltonians
hξ := h − Jξ. Notice that in terms of symmetry properties, the new systems whose periodic orbits we
want to compute are weaker. More specifically, even though the original Hamiltonian is G–invariant,
the augmented Hamiltonian h−Jξ is only Gξ–invariant, where Gξ is the adjoint isotropy of the element
ξ ∈ g, that is, Gξ := {g ∈ G | Adg ξ = ξ}.

As we already mentioned in the introduction, the use of the previous proposition in the search for the
RPOs of a system carries intrinsically two main limitations. Firstly, since the phase shift of a RPO that
amounts to a periodic orbit of h− Jξ is always of the form exp τξ, with τ some real number, the RPOs
whose phase shifts do not lie in the connected component of the identity of the group of symmetries G
cannot possibly be found in this way. Second, if G is a discrete group then its Lie algebra is trivial and
consequently so is the momentum map associated to this action, which makes the previous proposition
empty of content.

2.4 Results on critical point theory of functions on compact manifolds

2.4.1 The Lusternik–Schnirelman approach

The following two results are slight generalizations of those presented in [68] for circle actions. The
additional hypotheses that we will introduce in our statements will make the original proofs work with
straightforward modifications.

Proposition 2.2 Let M be a compact G–manifold, with G a Lie group acting properly on M . Any
G–invariant smooth function f ∈ C∞(M)G has at least

Cat(M/G) (2.2)

critical orbits.

In the previous statement, the symbol Cat denotes the Lusternik–Schnirelman category of the
quotient compact topological space M/G (the action of G on M does not need to be free and, con-
sequently, the quotient M/G is not in general a manifold). Recall that the Lusternik–Schnirelman
category of a compact topological space M is the minimal number of closed contractible sets needed to
cover M .

The preceding statement is one of the main analytical tools that we will use to obtain estimates
on the number of RPOs of our problem. As we will see later on, we will be able to reduce the search
for those RPOs to the computation of the number of critical orbits of a G–invariant function defined
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on a compact G–symmetric manifold that satisfies the hypotheses of Proposition 2.2. In principle, the
category in (2.2) is very difficult to compute. Nevertheless, in our situation we will take advantage of
the symplectic nature of our setup to estimate it in terms of readily computable dimensional quantities.
The main tools to carry that out are the following technical propositions whose relevance will become
apparent at the time of their application in the proof of the main theorems.

Proposition 2.3 Let M be a compact G–manifold, with G a Lie group acting properly on M such that
the isotropy subgroup of each point m ∈M is a finite subgroup of G. Let ω be a symplectic G–invariant
form defined on M . Let H ⊂ G be a Lie subgroup of G and N ⊂M be a H–invariant closed submanifold
of M such that for any n ∈ N we have that

(TnN)ω = g · n and TnN ∩ g ·m = h · n, (2.3)

where g·n =
{
ξM (n) := d

dt

∣∣
t=0

exp tξ · n | ξ ∈ g
}

denotes the tangent space at n ∈ N ⊂M of the G–orbit
G · n = {g · n | g ∈ G}. Then, there is a cohomology class θ ∈ H2(N/H;R) such that θk �= 0, where
k = 1

2 (dimN − dimH).

The proof of the following elementary fact can be found in [61].

Proposition 2.4 Let M be a compact topological space. The Lusternik–Schnirelman category of M is
at least 1 plus its cuplength.

Corollary 2.5 Let (M,ω) be a 2n–dimensional compact symplectic manifold. Then,

Cat(M) ≥ 1 + n. (2.4)

Proof The symplecticity of ω implies that ωn is a nowhere vanishing multiple of the volume form,
hence [ω]n = [ωn] �= 0 in the top cohomology group of the manifold, and therefore the cuplength of the
manifold M is at least n. The conclusion follows from Proposition 2.4. �

Another approach to the search of critical orbits of symmetric functions is the use of the so called
equivariant Lusternik–Schnirelman category or G–Lusternik–Schnirelman category (denoted by
the symbol G–Cat), introduced in different versions and degrees of generality by Fadell [18], Clapp and
Puppe [12, 13], and Marzantowicz [44]. The equivariant Lusternik–Schnirelman category is not the
standard Lusternik–Schnirelman category of the orbit space that we used in the previous paragraphs,
but the minimal cardinality of a covering of the G–manifold M by G–invariant closed subsets that can
be equivariantly deformed to an orbit. This new category is also a lower bound for the number of critical
orbits of a G–invariant function on M and is actually a better bound since it can be proven (see for
instance [18, page 43]) that G−Cat(M) ≥ Cat(M/G), where the equality holds, for instance, when the
G–action on M is free. Nevertheless, we will not use this category since the cohomological estimates
that can be made via arguments similar to those established using propositions 2.3 and 2.4 on the value
of the G–category require the use of G–equivariant cohomology hence giving rise to estimates that are
not as readily computable as those that we will obtain using standard cohomology.

2.4.2 The Morse theoretical approach

The following paragraphs briefly summarize some results on Morse Theory adapted to the symmetric
Hamiltonian setup as they can be read in the works of Kirwan [29, 30].

Let f ∈ C∞(M) be a smooth function on the compact manifold M . A critical point m ∈M is said
to be non–degenerate when the second derivative of f at the critical point d2f(m) is a non degenerate
quadratic form. Non degenerate critical points are isolated. The index if (m) of a critical point m is
the maximal dimension of a subspace of TmM in which d2f(m) is negative definite. A smooth function
all whose critical points are non degenerate is said to be of Morse type.

If M is a G–manifold with G a Lie group of positive dimension, the critical points of any smooth
G–invariant function f ∈ C∞(M)G come in G–orbits. Therefore, since the critical points of f are not
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isolated the function f cannot possibly be of Morse type. The closest condition to being of Morse type
that we can envision in the equivariant context is what we will call being of Morse–Bott type with
respect to the G–action. A function f ∈ C∞(M)G is of Morse–Bott type with respect to the G–action
when all its critical points m ∈M satisfy that

kerd2f(m) = Tm(G ·m).

This condition will be needed in the statement of our main results. Note that this is a ”reasonable”
condition to be imposed since it is generic in the G–category. A situation in which it is very easy to
see that this is the case is when the G–action on M is free. In that case, a G–invariant function being
of Morse–Bott type is equivalent to its projection onto the quotient manifold M/G being a standard
Morse function, which occurs generically.

The Morse–Bott condition implies the minimal degeneracy condition [29, Appendix 10], which is
the weakest condition that, to the knowledge of the author, allows the formulation of Morse inequalities
and standard Morse theory (see [5, 45] for additional information on Morse–Bott functions). More
specifically, the Morse inequalities in this situation state that if the function f ∈ C∞(M)G is Morse–
Bott with respect to the G–action on M , then there exits a polynomial R(t) in t with non negative
integer coefficients such that∑

G·x critical orbit of f

tif (G·x)Pt(G · x)− Pt(M) = R(t)(1 + t), R(t) ≥ 0, (2.5)

where the sum runs over all the critical orbits G · x of the function f , and Pt(G · x), Pt(M) denote the
Poincaré series of G · x and M respectively

Pt(G · x) =
∑
i≥0

bi(G · x)ti, Pt(M) =
∑
i≥0

bi(M)ti.

The symbols bi(M) (resp. bi(G · x)) denote the Betti numbers of the manifold M (resp. G · x), that is,

bi(M) = dimHi(M) (resp. bi(G · x) = dim(G · x) ).

The Morse inequalities (2.5) still hold if instead of using ordinary cohomology we use equivariant coho-
mology, that is, there exits a polynomial R(t) in t with non negative integer coefficients such that∑

G·x critical orbit of f

tif (G·x) − PGt (M) = R(t)(1 + t), R(t) ≥ 0, (2.6)

where PGt (M) =
∑
i≥0 t

i dimHiG(M). These are the so called equivariant Morse inequalities.
A straightforward consequence of (2.6) is that any G–invariant function f on the compact manifold

M has at least

|χ(M)G| := |PG−1(M)| (2.7)

critical orbits. The number χ(M)G is called the G–Euler characteristic of M .
The previous remark is particularly relevant in the globally Hamiltonian framework: suppose now

that the compact G–manifold M is symplectic, that the Lie group G acts canonically, and that this
action has an equivariant momentum map associated J : M → g∗. Let µ ∈ J(M) ⊂ g∗ be a regular
value of J and Gµ be the corresponding coadjoint isotropy subgroup which we will assume acts in a
locally free fashion on J−1(µ). In the proofs of our main results it will be necessary to evaluate the
number of critical orbits of a Gµ–invariant function on J−1(µ), which by (2.7) can be done just by
computing χ(J−1(µ))Gµ . This work has been carried out in full detail by Kirwan [29, 30] who realized
that the function fµ := ‖J − µ‖2 ∈ C∞(M)Gµ (‖ · ‖ is any Ad∗G–invariant inner product on g∗) is an
equivariantly perfect Morse function, which allows to explicitly write down (see [30, Theorem 4.14]) the
Gµ–equivariant Betti numbers of J−1(µ), and consequently χ(J−1(µ))Gµ , in terms of the Betti numbers
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of M , of the classifying space of Gµ, and of the equivariant Betti numbers of some simpler subspaces of
M explicitly constructed using the geometry of the momentum map. Therefore, in our future discussions
we will consider χ(J−1(µ))Gµ as a computable quantity that we can use, via (2.7), in our estimations
on the number of Gµ–critical orbits on J−1(µ) (see Section 3 in [30] for an explicit example of this
calculation).

We conclude this remark by noting that since we will be working with locally free actions, the rational
equivariant cohomology ring H∗Gµ(J

−1(µ);Q) is isomorphic to the ordinary rational cohomology ring
H∗(J−1(µ)/Gµ;Q), and therefore

χ(J−1(µ))Gµ = χ(J−1(µ)/Gµ).

2.5 Lagrange multipliers

The use of Lagrange multipliers will be crucial in the proof techniques that we will use. The version of
this result that we present in the following proposition can be found as Corollary 3.5.29 in [2].

Proposition 2.6 Let M be a smooth manifold, F be a Banach space, g : M → F be a smooth submer-
sion, f ∈ C∞(R), and N = g−1(0). The point n ∈ N is a critical point of the restriction f |N iff there
exists λ ∈ F ∗, called a Lagrange multiplier, such that n is a critical point of f − λ ◦ g.

3 The main result

3.1 Relative periodic orbits with prescribed isotropy

Before we state the main result of this section we need some terminology. Let h ∈ C∞(V ) a smooth
function defined on the vector space V such that h(0) = 0, dh(0) = 0, and the second derivative at zero
Q := d2h(0) is a definite quadratic form. Let 〈·, ·〉 be the scalar product on V defined by

〈u, v〉 :=
1
2
d2h(0)(u, v), u, v ∈ V,

and ‖ · ‖ be the associated norm. We will say that these are the scalar product and the norm
associated to the quadratic form Q. We now write the Taylor expansion of h around the origin:

h(v) = ‖v‖2 +
1
3
d3h(0)

(
v(3)

)
+ · · ·+ 1

k!
dkh(0)

(
v(k)

)
+ · · · v ∈ V.

We will say that the kth term in the Taylor expansion of the function h is purely radial when

1
k!

dkh(0)
(
v(k)

)
= ck‖v‖k,

where ck is a constant real number.

The main goal of this section is proving the following theorem:

Theorem 3.1 Let (V, ω, h,G,J : V → g∗) be a Hamiltonian system with symmetry, with V a vector
space, and G a compact positive dimensional Lie group that acts on V in a linear and canonical fashion.
Suppose that h(0) = 0, dh(0) = 0 (that is, the Hamiltonian vector field Xh has an equilibrium at the
origin) and that the linear Hamiltonian vector field A := DXh(0) is non degenerate and contains ±iν◦
in its spectrum. Let Uν◦ be the resonance space of A with primitive period Tν◦ := 2π

ν◦
. Let K ⊂ G be an

isotropy subgroup of the G–action on V for which the quadratic form QK on the K–fixed point space
UKν◦ defined by

QK(v) :=
1
2
d2h(0)(v, v), v ∈ UKν◦
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is definite, and the set J−1
LK

(0) ∩ Q−1
K (1) is non empty (QK := QK |(Uν◦ )K ). In these conditions, there

exists a neighborhood B(K) ⊂ l∗ of zero in l∗ such that for any λ ∈ B(K), the intersection J−1
LK

(λ) ∩
Q−1
K (1) is a submanifold of (Uν◦)K . Suppose that the following two generic hypotheses hold:

(H1) The restriction h|UKν◦ of the Hamiltonian h to the fixed point subspace UKν◦ is not radial with respect
to the norm associated to QK .

(H2) Let hk(v) := 1
k!d

kh(0)
(
v(k)

)
, v ∈ UKν◦ be the first non radial term in the Taylor expansion of

h|UKν◦ around zero. We will assume that k ≥ 4 and that the restrictions hk|J−1
LK

(λ)∩Q−1
K (1) of hk to

the submanifolds J−1
LK

(λ) ∩Q−1
K (1), with λ ∈ B(K), are Morse–Bott functions with respect to the

(N(K)/K)λ × S1–action.

Then, the neighborhood B(K) can be chosen so that for any ε > 0 close enough to zero and any λ ∈ B(K)
there are at least

max
[
1
2

(
dimUKν◦ − dim(N(K)/K)− dim (N(K)/K)λ

)
, χ

(
J−1
LK

(λ) ∩Q−1
K (1)

)Lλ×S1
]

(3.1)

distinct relative periodic orbits of Xh with energy ε, momentum ε(Ξ∗K)−1(λ) ∈ g∗, isotropy subgroup K,
and relative period close to Tν◦ . The choice of B(K) guarantees that these relative periodic orbits are
not just relative equilibria. The symbol N(K) denotes the normalizer of K in G, JLK : (Uν◦)K → l∗

is the momentum map associated to the free L := N(K)/K–action on (Uν◦)K , Ξ∗K denotes the natural
isomorphism Ξ∗K : (h◦)K → l∗, and (N(K)/K)λ the coadjoint isotropy of λ ∈ l∗ (see Section 2.1 for

more information about this notation). The symbol χ
(
J−1
LK

(λ) ∩Q−1
K (1)

)Lλ×S1

denotes the Lλ × S1–
Euler characteristic of J−1

LK
(λ) ∩Q−1

K (1) (which in this case equals the standard Euler characteristic of
the symplectic quotient χ(J−1

LK
(λ) ∩Q−1

K (1)/Lλ × S1)).

Remark 3.2 The main estimate (3.1) contains two parts. The first one, in terms of various dimensions,
is in general easy to compute (see the examples below) and has been obtained via a cohomological esti-
mate on the Lusternik–Schnirelmann category of certain symplectic orbifold. The second part involving
the Euler characteristic is in general a sharper estimate but also much more difficult to compute. The
reader is referred to [30] for an example on how to compute these quantities. �

Remark 3.3 As we will see in the proof, the properties of the non trivial S1–action on the space UKν◦
(normal form) imply that the number k in the statement of hypothesis (H2) is necessarily even. �

Examples 3.4 We illustrate with a few elementary examples the use of Theorem 3.1 in specific situa-
tions.

(i) Nonlinearly perturbed spherical pendulum: the spherical pendulum consists of a particle of
mass m, moving under the action of a constant gravitational field of acceleration g, on the surface
of a sphere of radius l. We consider this system perturbed by an S1–invariant nonlinear term. If
we use as local coordinates of the configuration space around the downright position the Cartesian
coordinates (x, y) of the orthogonal the projection of the sphere on the equatorial plane, the (local)
Hamiltonian of this system is:

h(x, y, px, py) =
p2x
2m

+
p2y
2m
− (xpx + ypy)2

2ml2
−mg

√
l2 − x2 − y2 + ϕ(x2 + y2, p2x + p2y, xpx + ypy),

where the function ϕ is of order two or higher in all of its variables and encodes the nonlinear
perturbation. This system is invariant with respect to the globally Hamiltonian S1–action given
by the expression Φθ(x, y, px, py) = (Rθ(x, y), Rθ(px, py)), where Rθ denotes a rotation of angle θ.
The momentum map J : R4 → R associated to this action is given by J(x, y, px, py) = xpy − ypx.
The point (x, y, px, py) = (0, 0, 0, 0) is an stable equilibrium of the Hamiltonian vector field Xh
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to which we apply Theorem 3.1. Indeed, the linearization of Xh at the origin has two imaginary
eigenvalues that are forced to be double by the symmetry of the problem. Consequently, the
associated resonance space coincides with the entire R4. We now use the dimensional estimate
in (3.1) to look for RPOs with trivial isotropy. A straightforward dimension count shows that
when K = {e}, the orbifold J−1(0)∩Q−1

e (1)/S1×S1 is zero dimensional and therefore hypotheses
(H1) and (H2) trivially hold for the standard spherical pendulum (ϕ ≡ 0) and for ALL non
radial perturbations ϕ. Therefore, for any value of the momentum and the energy neighboring 0,
there exists at least one RPO with trivial isotropy. An in–depth study of this motions can be
found in [14].

(ii) The spring pendulum in three dimensions: the spring pendulum in space is a bob of mass
m under the action of a constant gravitational field of acceleration g attached to a spring whose
length at rest equals l. The Hamiltonian function associated to this system is

h(x, y, z, px, py, pz) =
1
2
(p2x + p2y + p2z)−mgz + σ(x2 + y2 + (z − l)2, p2x + p2y, z, pz).

where σ is a smooth real valued function such that σ(x2 + y2 + (z − l)2, p2x + p2y, z, pz) = k
2 (x2 +

y2 +(z− l)2)+ terms of order higher or equal than two in the first two variables and strictly higher
than two in z and pz. This system presents the same S1–symmetry as the previous example. The
point (0, 0, l+ gm

k , 0, 0, 0) is a stable equilibrium where the linearization of the Hamiltonian vector

field has two pairs of triple purely imaginary eigenvalues equal to ± i2
√
k
m . Hence, in this case, the

resonance space is six dimensional. When there are no higher order terms in the expansion of the
function σ we have a linear spring (which does not mean that its associated Hamiltonian vector
field is linear) obeying Hooke’s law with elastic constant k. In this case, the spring pendulum is
too degenerate and does not satisfy hypothesis (H2). However, in the presence of generic non
linear terms in the expansion of σ, Theorem 3.1 predicts the existence of two RPOs with trivial
isotropy, for any value of the momentum and the energy neighboring the values at the equilibrium.

(iii) An example with spherical symmetry: consider T ∗R3 � R3×R3 with the canonical symplectic
form and the group SO(3) acting canonically by diagonal transformations. If we denote by (q,p)
the elements of R3 × R3, the momentum map associated to this action is the standard angular
momentum J(q,p) = q× p. Consider the Hamiltonian function:

h(q,p) = a‖p‖2 + b‖q‖2 + f(‖p‖2, ‖q‖2,q · p),

where a and b are real strictly positive constants and f is a function whose Taylor expansion only
contains terms of order two or higher in its variables. The associated Hamiltonian vector field
has a stable equilibrium at the origin and its linearization at that point exhibits one pair of triple
purely imaginary eigenvalues that therefore have a six dimensional resonance space associated.
We now look for RPOs nearby the equilibrium. The origin is surrounded by points with isotropy
subgroup K either trivial or equal to a circle. When K = S1, the vectors q and p are forced to
be parallel and therefore its momentum value equal to zero, hence there is only room for planar
periodic solutions. When K = {e}, the vectors q and p are necessarily not parallel and therefore
its angular momentum is different from zero. Now, for any momentum value µ ∈ R3 close to
zero, the orbifold J−1(µ) ∩ Q−1

{e}(1)/((SO(3))µ × S1) is zero dimensional because (SO(3))µ � S1

consequently, any function f that depends non–trivially on q · p makes the Hamiltonian vector
field associated to the corresponding h exhibit, by Theorem 3.1, at least one RPO with trivial
isotropy, for any value of the momentum and the energy neighboring the values at the equilibrium.
�

Remark 3.5 Note that in the absence of symmetries and for non trivial manifolds, that is G = {e}
and dimV > 0, the first part of the main estimate (3.1) reduces to

1
2

(dimUν◦) , (3.2)
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which coincides with the conclusions of Moser’s version [51] of Theorem 1.1. �

Remark 3.6 The main feature of the first part of the estimate (3.1), namely,

1
2

(
dimUKν◦ − dim(N(K)/K)− dim (N(K)/K)λ

)
is that it does not involve any dynamics, that is, neither the Hamiltonian h nor any of its byproducts are
present in it. The kinematical setup of the problem, in our case given by the symplectic representation
of G on V , fully determine the number of RPOs that can be expected around a stable symmetric
equilibrium, induced by ANY Hamiltonian system that satisfies the hypotheses of the Theorem.

This dynamical independence, that was already present in the non symmetric result of Weinstein
and Moser (3.2), has a price in terms of sharpness, since in general, the Morse theoretical part of (3.1)
involving the Euler characteristic is expected to give better results. �

Remark 3.7 Despite the one half in front of the first part of estimate (3.1) we always obtain an integer
out of it. Indeed, UKν◦ is a symplectic vector subspace of the symplectic vector space Uν◦ , and therefore of
even dimension. Also, the coadjoint orbit (N(K)/K) ·λ is also a symplectic manifold of even dimension
equal to dim(N(K)/K)−dim (N(K)/K)λ, hence −dim(N(K)/K)−dim (N(K)/K)λ is necessarily also
an even number. �

3.2 Proof of Theorem 3.1

The proof of Theorem 3.1 is unfortunately quite long and technical. In order to make it more accessible
to the reader I have divided it into several subsections that accomplish a self–contained task.

The general strategy of the proof consists of characterizing the relative periodic orbits that we are
looking for, through the use of the normal form theorem, as the critical points of an equivariant function
on certain manifold. The orbit space of this manifold with respect to the natural group action that
leaves it invariant is a symplectic orbifold (the group action is locally free) which allows us to implement
the various critical point theory techniques that we introduced in Section 2.4.

3.2.1 The manifold J−1
LK

(λ) ∩Q−1(1)

We start the proof of the theorem by showing that for momentum values λ ∈ l∗ nearby zero, the
manifolds J−1

LK
(λ) and Q−1(1) intersect transversely and, therefore, the intersection forms a manifold.

This manifold is important because it will constitute the numerator of the symplectic orbifold that we
described in the previous paragraph.

Proposition 3.8 Suppose that we are under the hypotheses of Theorem 3.1. Let K ⊂ G be an isotropy
subgroup of the G–action on Uν◦ and JLK : (Uν◦)K → l∗ be the momentum map corresponding to the
free N(K)/K–action on (Uν◦)K . Suppose that the set J−1

LK
(0) ∩Q−1

K (1) is not empty. Then, there is a
neighborhood B(K) ⊂ l∗ of 0 in l∗ such that for any λ ∈ B(K):

(i) J−1
LK

(λ) � Q−1(1) = J−1
LK

(λ) � Q−1
K (1), that is, J−1

LK
(λ) intersect transversely with Q−1(1) and with

Q−1
K (1).

(ii) J−1
LK

(λ)∩Q−1(1) = J−1
LK

(λ)∩Q−1
K (1) is a compact submanifold of (Uν◦)K of dimension dim(Uν◦)K−

dimN(K)/K − 1 = dimUKν◦ − dimN(K)/K − 1.

(iii) The submanifold J−1
LK

(λ) ∩Q−1(1) = J−1
LK

(λ) ∩Q−1
K (1) ⊂ (Uν◦)K does not contain any N(K)/K–

relative equilibrium of the system ((Uν◦)K , ω|(Uν◦ )K , QK).

Proof (i) Given that the N(K)/K–action on (Uν◦)K is free, the momentum map JLK is a submersion
and therefore its level sets are always submanifolds of (Uν◦)K , and consequently of Uν◦ . At the same
time, the definiteness of the quadratic form Q implies that its level sets are compact submanifolds
of Uν◦ . We will show the transversality of the level sets in the statement by showing that J−1

LK
(0) �
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Q−1(1). Since the transversality is an open condition (see for instance the Stability Theorem in page
35 of [22]), the result will follow for J−1

LK
(λ) � Q−1(1), for λ close enough to zero. In order to prove

that J−1
LK

(0) � Q−1(1) we need to show that for each v ∈ J−1
LK

(0) ∩Q−1(1), which by hypothesis is not
empty, Tv(Uν◦)K = TvJ−1

LK
(0) + TvQ

−1(1). Since TvQ−1(1) has codimension one, it suffices to find a
vector w ∈ TvJ−1

LK
(0) that does not lie in TvQ−1(1). This job is done by w = d

dt

∣∣
t=0

v + tv ∈ Tv(Uν◦)K
since a straightforward calculation shows that, in one hand, TvJLK ·w = 0 because v ∈ J−1

LK
(0) and, at

the same time, dQ(v) · w = d2h(0)(v, v) = 2QK(v) �= 0, by the definiteness hypotheses on QK , hence
w /∈ TvQ−1(1).

(ii) Since J−1
LK

(λ) ∩Q−1(1) = J−1
LK

(λ) ∩Q−1
K (1) ⊂ (Uν◦)K is a smooth submanifold of Uν◦ and (Uν◦)K

is a smooth submanifold of Uν◦ , then J−1
LK

(λ) ∩ Q−1(1) is a smooth submanifold of (Uν◦)K . We show
the compactness of J−1

LK
(λ) ∩ Q−1(1) by proving that it is sequentially compact, that is, any sequence

{xn} ⊂ J−1
LK

(λ)∩Q−1(1) has a convergent in subsequence in J−1
LK

(λ)∩Q−1(1). Indeed, since Q−1(1) is a
compact subset of Uν◦ , there exists a subsequence {xnk} of {xn}, convergent in Q−1(1), that is xnk → l,
with l ∈ Q−1(1). Since {xnk} ⊂ J−1

LK
(λ) for all nk and J−1

LK
(λ) is closed then l ∈ J−1

LK
(λ) necessarily, as

required. The claim on the dimension is a consequence of the Transversality Theorem.

(iii) We proceed by contradiction: suppose that the point v ∈ (Uν◦)K is a relative equilibrium of
the system with velocity ξ ∈ l. This implies that d

(
QK − JξLK

)
(v) = 0. The Lagrange Multipliers

Theorem (taking ξ in Proposition 2.6 as the Lagrange multiplier) implies that dQK(v)|kerTvJLK = 0.

However, the transversality J−1
LK

(λ) � Q−1
K (1) implies the existence of vectors w ∈ kerTvJLK that do

not belong to TvQ−1
K (1) and therefore dQK(v) · w �= 0, which represents a contradiction. �

3.2.2 Normal form formulation

As we already said, the main idea behind the theorem consists of using the normal form theorem and
Proposition 2.1 to reduce the search for RPOs with isotropy subgroup K to the search for periodic orbits
of the Hamiltonian systems of the form (ω|VK , hξ) with hξ := h|VK − JξLK . We will first apply the ideas
introduced in Section 2.2 to construct a normal form for these systems that will set up the problem of
this search for periodic orbits in terms of the search for relative equilibria of a S1–action that we will
describe in what follows.

Firstly, consider the symmetric Hamiltonian system (V K , ω|V K , h|V K , N(K)/K,JLK : V K → l∗).
The RPOs of this system amount to RPOs of the original system whose isotropy subgroups include
K. Let AK := DXh|VK (0) be the linearization at zero of the Hamiltonian vector field Xh|VK . By the
hypotheses on Xh, the eigenvalues ±iν◦ are in the spectrum of AK , and the corresponding resonance
space is UKν◦ . The mapping θ ∈ S1 �→ e

θ
ν◦A

K

|UKν◦ generates a symplectic linear S1–action on (UKν◦ , ω|UKν◦ ),
whose momentum map is given by 1

ν◦
QK .

Consider now hKξ := h|UKν◦ − Jξ
LK

, with ξ ∈ l, as a l–parameter family of Hamiltonian functions on
UKν◦ in the sense of point (v) in Section 2.2. Since for any ξ ∈ l this family satisfies that hKξ (0) = 0,
dhKξ (0) = 0, and DXhK0 (0) = DXh|UKν◦

(0) = A|UKν◦ = AK is non degenerate, we can construct a normal

form equivalent system ĥKξ whose S1–relative equilibria give us the periodic orbits of hKξ . Due to the

fact that the N(K)/K and S1–actions on UKν◦ commute and that JLK is quadratic, the normal form ĥKξ
can be chosen so that

ĥKξ = ĥ|UKν◦ − Jξ
LK
,

with ĥ|UKν◦ an N(K)/K × S1–invariant function on UKν◦ such that

ĥ|UKν◦ (u) = QK(u) +
1
2
d2h|UKν◦ (0)(u, u) + · · ·+ 1

k!
dkh|UKν◦ (0)(u(k)) + (higher order terms). (3.3)



Juan-Pablo Ortega: Relative normal modes for nonlinear Hamiltonian systems 14

3.2.3 The critical points of the normal form Hamiltonian and a blow up argument

In the following lemma we evaluate the critical points of the restriction of the function ĥ|UKν◦ to the
level sets of the form J−1

LK
(λ) ∩Q−1

K (ε), where λ ∈ B(K), the neighborhood of zero in l∗ introduced in
Proposition 3.8, and ε > 0 is very small. Furthermore, a blow up argument will show that these critical
points can be arranged in smooth branches.

Lemma 3.9 Suppose that we are under the hypotheses of Theorem 3.1. Then, the restriction of the
function hk ∈ C∞(UKν◦) defined by hk(u) := 1

k!d
kh|UKν◦ (0)(u(k)), to the level sets of the form J−1

LK
(λ) ∩

Q−1
K (1), where λ ∈ B(K), the neighborhood of zero in l∗ introduced in Proposition 3.8, has at least

max
[
Cat

(
J−1
LK

(λ) ∩Q−1
K (1)/(Lλ × S1)

)
, χ

(
J−1
LK

(λ) ∩Q−1
K (1)

)Lλ×S1
]

(3.4)

distinct critical points.
Furthermore, let λ◦ ∈ B(K) ⊂ l∗ be arbitrary but fixed and let {u1, . . . , uk} be the set of critical

points of the restriction of the function hk to the level set J−1
LK

(λ◦)∩Q−1
K (1), provided by (3.4). Then, for

each ui, i ∈ {1, . . . , k}, there exist a neighborhood E ⊂ R of the origin in the real line, a neighborhood
Vλ◦ ⊂ l∗ of λ◦ in l∗, and a smooth function ρ : E × Vλ◦ → Q−1

K (1) such that ρ(0, λ◦) = ui and also, the
function v : E × Vλ◦ → UKν◦ defined by v(r, λ) := rρ(r, λ) satisfies that:

(i) v(r, λ) ∈ (Uν◦)K iff r �= 0.

(ii) QK(v(r, λ)) = r2 and JLK (v(r, λ)) = r2λ, r ∈ E, λ ∈ Vλ◦ .

(iii) dĥ|UKν◦ |J−1
LK

(r2λ)∩(QK)−1(r2)(v(r, λ)) = 0, that is, the branches v(r, λ) are made of critical points of

the restriction of the function ĥ|UKν◦ to the level sets J−1
LK

(r2λ) ∩ (QK)−1(r2).

Proof Firstly, note that the estimate (3.4) is a straightforward consequence of Proposition 2.2, (2.7),
and the invariance properties of hk.

We now prove the existence of the branches in the statement. Let u0 be one of the critical points of
the restriction of the function hk to the level set J−1

LK
(λ◦)∩Q−1

K (1), provided by (3.4). The transversality
of JLK and QK implies the existence of a very convenient coordinate patch around u0 in Q−1

K (1). In
order to construct it, let us show first that the restriction JLK |Q−1

K (1)∩J−1
LK

(B(K)) is a submersion onto

its image. Indeed, for any u ∈ Q−1
K (1) ∩ J−1

LK
(B(K)) we have that

dim Im
(
TuJLK |Q−1

K (1)∩J−1
LK

(B(K))

)
= dim (kerTuQK)− dim

(
kerTuJLK |Q−1

K (1)

)
= dimUKν◦ − 1− dim (kerTuJLK ∩ kerTuQK)

= dimUKν◦ − 1 + dim (kerTuJLK + kerTuQK)− dim (kerTuJLK )− dim (kerTuQK)
= dim l∗,

as required. In the last equality we used that since u ∈ J−1
LK

(B(K)), then kerTuJLK � kerTuQK ,
and therefore dim (kerTuJLK + kerTuQK) = dimUKν◦ . In these circumstances, the Local Submersion
Theorem (see for instance [2, Theorem 3.5.2]) implies the existence of a neighborhood Vλ◦ of λ◦ in l∗, a
neighborhoodW of the origin in Rs, with s = dimUKν◦−dim l∗−1, and a mapping ϕ : Vλ◦×W → Q−1

K (1)
that is a diffeomorphism onto its image, such that:

ϕ(λ◦, 0) = u0 and JLK (ϕ(λ,w)) = λ, λ ∈ Vλ◦ , w ∈W. (3.5)

We will further improve this coordinate patch around u0 by ”factoring out” the Lλ◦ × S1–action in it.
Indeed, since the Lie group Lλ◦ × S1 acts on Q−1

K (1), we can induce a local action of this group on
Vλ◦ ×W by declaring ϕ to be equivariant, that is, for any g = (l, θ) ∈ Lλ◦ × S1 close enough to the
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identity we define g · (λ,w) := ϕ−1 (g · ϕ(λ,w)) . Note that by the very definition of this action and
by (3.5), we have that

JLK (ϕ(g · (λ,w))) = JLK (ϕ(ϕ−1(g · ϕ((λ,w))))) = JLK (g · ϕ(λ,w)) = l · JLK (ϕ(λ,w)) = l · λ, (3.6)

consequently

g · (λ,w) = (l, θ) · (λ,w) = (l · λ,Φ(g, λ, w)), (3.7)

for some smooth function Φ. The dot in l · λ denotes the coadjoint action of Lλ◦ on l∗. Note that
in (3.6) we used the equivariance of JLK with respect to the Lλ◦–action that was inherited from its
L–equivariance, as well as the invariance of JLK with respect to the S1–action which is justified, via
Noether’s Theorem, by the fact that this action is induced by a Hamiltonian flow associated to a
L–invariant Hamiltonian, namely QK .

Using these remarks we are now going to construct a slice for the local Lλ◦ ×S1–action on Vλ◦ ×W
that goes through the point (λ◦, 0). Firstly, it is easy to see by using (3.7) that

T(λ◦,0)

(
(Lλ◦ × S1) · (λ◦, 0)

)
= {0} ×W ′,

where W ′ ⊂ W is a vector subspace of W . The remarks that we made in Section 2.1 about the
construction of the slices implies the existence of a smooth mapping ψ diffeomorphic onto its image of
the form

ψ : Vλ◦ × U −→ Vλ◦ ×W
(λ, u) �−→ (λ, η(λ, u))

whose image (shrinking Vλ◦ if necessary) is a local slice through (λ◦, 0) for the local Lλ◦ ×S1–action on
Vλ◦ ×W . The set U is an open neighborhood of the origin in a vector space isomorphic to W/W ′ and
η : Vλ◦ × U → Vλ◦ ×W is a smooth map such that η(λ◦, 0) = 0.

In these circumstances, the version of the Slice Theorem that we presented in Section 2.1 implies
the existence of a local cross–section σ : Z ⊂ Lλ◦ × S1/(Lλ◦ × S1)u0 → Lλ◦ × S1 of the homogeneous
space Lλ◦ × S1/(Lλ◦ × S1)u0 , and a smooth map F of the form

F : Z × Vλ◦ × U −→ Q−1
K (1)

(z, λ, u) �−→ σ(z) · ϕ(λ, η(λ, u))
(3.8)

that is a diffeomorphism onto an open set of Q−1
K (1) that contains u0.

We will now use this coordinate patch to obtain the branches v(r, λ) whose existence we claim in
the second part of the statement. We start by setting up the problem in polar coordinates since it is
a polar blowing–up argument what will give us the result. Let 2n be the dimension of the symplectic
vector space UKν◦ . We will denote by S2n−1 the sphere in UKν◦ obtained by using the norm associated to
the definite quadratic form QK . We now define the blown–up Hamiltonian hb : R× S2n−1 → R, as:

hb(r, u) := ĥ|UKν◦ (ru), r ∈ R, u ∈ S2n−1.

When the variable u is in a neighborhood of u0, we can use (3.8) to give a local expression for hb

in Z × Vλ◦ × U–variables; let hlb : R × Z × Vλ◦ × U → R be the local expression of the blown–up
Hamiltonian, defined by

hlb(r, z, λ, u) := hb(r(σ(z) · ϕ(λ, η(λ, u)))) = ĥ|UKν◦ (r(σ(z) · ϕ(λ, η(λ, u)))).

Notice that the G–invariance of the Hamiltonian h implies that

hlb(r, z, λ, u) = ĥ|UKν◦ (r(σ(z) · ϕ(λ, η(λ, u)))) = ĥ|UKν◦ (rϕ(λ, η(λ, u))) ≡ hlb(r, λ, u),
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that is, hlb does not depend on the Z–variables. The main advantage of the use of these coordinates is the
fact we can search for the critical points of the restriction of ĥ|UKν◦ to the level sets J−1

LK
(λ)∩ (QK)−1(ε)

by looking for the triples (r, λ, u) ∈ R × Vλ◦ × U for which DUh
lb(r, λ, u) = 0 (DUhlb denotes the

partial Fréchet derivative of hlb relative to the U–variable). More specifically: DUhlb(r, λ, u) = 0 iff the
restriction of ĥ|UKν◦ to the level set J−1

LK
(r2λ) ∩ (QK)−1(r) has a critical point at rϕ(λ, η(λ, u)). Using

now hypotheses (H1) and (H2) on the Hamiltonian h we can write

hlb(r, λ, u) = r2 + α4r
4 + α6r

6 + · · ·+ αk−2r
k−2 + rkhlbk (λ, u) + o(rk, λ, u), (3.9)

where α4, α6, . . . , αk−2 are real coefficients and hlbk (λ, u) := hk(ϕ(λ, η(λ, u))). Expression (3.9) can be
rewritten of the form

hlb(r, λ, u)− r2 − α4r
4 − α6r

6 − · · · − αk−2r
k−2 = rkg(r, λ, u),

with g is a smooth function on his variables such that

DUg(r, λ, u) = 0 if and only if DUh
lb(r, λ, u) = 0. (3.10)

The Taylor expansion of g on the r variables around r = 0 has the form

g(r, λ, u) = hlbk (λ, u) + o(r, λ, u) = hk(ϕ(λ, η(λ, u))) + o(r, λ, u)

Notice that

g(0, λ◦, 0) = hk(ϕ(λ◦, η(λ◦, 0))) = hk(u0),

and that
DUg(0, λ◦, 0) = DUh

lb
k (λ◦, 0) = dhk(u0) · (DWϕ(λ◦, 0) ·DUη(λ◦, 0)) = 0,

since DWϕ(λ◦, 0) · DUη(λ◦, 0) maps into Tu0(J
−1
LK

(λ◦) ∩ Q−1
K (1)), which, by the choice of u0 lies in

the kernel of dhk(u0) (recall that u0 was chosen to be a critical point of the restriction of hk to
J−1
LK

(λ◦) ∩Q−1
K (1)). Moreover, it is easy to see that for any pair u, v ∈ U :

D2
Ug(0, λ◦, 0)(u, v) = d2hk|J−1

LK
(λ◦)∩Q−1

K (1)(u0)(DWϕ(λ◦, 0) ·DUη(λ◦, 0) · u,DWϕ(λ◦, 0) ·DUη(λ◦, 0) · v).

The Morse–Bott condition on hk|J−1
LK

(λ◦)∩Q−1
K (1) implies that D2

Ug(0, λ◦, 0) is a non degenerate quadratic

form since the image of the linear mapping DWϕ(λ◦, 0) ·DUη(λ◦, 0) : U → Tu0(J
−1
LK

(λ◦) ∩Q−1
K (1)) is a

vector subspace of Tu0(J
−1
LK

(λ◦)∩Q−1
K (1)) that, by construction, is complementary to Tu0((Lλ◦×S1)·u0).

In this situation the Implicit Function Theorem guarantees the existence of a function u : E×Vλ◦ → U
(shrink Vλ◦ if necessary) with E ⊂ R a neighborhood of the origin in R, such that

DUg(r, λ, u(r, λ)) = 0,

which, by (3.10) is equivalent to having DUhlb(r, λ, u(r, λ)) = 0 and consequently

dĥ|UKν◦ |J−1
LK

(r2λ)∩(QK)−1(r)(rϕ(λ, η(λ, u(r, λ)))) = 0.

The claim of the Lemma follows by taking ρ(r, λ) := ϕ(λ, η(λ, u(r, λ))) and v(r, λ) := rρ(r, λ) =
rϕ(λ, η(λ, u(r, λ))). �

3.2.4 Lagrange multipliers and RPOs

We now show that the branches of critical points found in Lemma 3.9 amount to RPOs of the original
system.
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Let now λ◦ ∈ l and v(r, λ) (with v : E × Vλ◦ → UKν◦) be one of the branches of critical points

of the restriction of the function ĥ|UKν◦ to the level sets J−1
LK

(r2λ) ∩ (QK)−1(r2) provided by (3.4).
Proposition 2.6 guarantees, for each v(r, λ) the existence of a multiplier (Λ(r, λ), c(r, λ)) ∈ l × R such
that:

dĥ|UKν◦ (v(r, λ)) = c(r, λ)dQK(v(r, λ)) + dJΛ(r,λ)

LK
(v(r, λ)), (3.11)

which implies that the point v(r, λ) is a periodic point of X
ĥKΛ(r,λ)

. If we are able to show that Λ(r, λ) can

be made very small so that we can use the Normal Form Theorem, all these periodic points will amount
to periodic orbits of X

h|UKν◦
−J

Λ(r,λ)
LK

and, by Proposition 2.1, to RPOs of Xh. We will prove this point by

pairing both sides of (3.11) at the point v(r, λ◦) with the vector wλ := Dλv(r, λ◦) · λ, λ ∈ l∗ arbitrary,
and taking into account that by the very construction of the function v(r, λ), JLK (v(r, λ)) = r2λ, for
any r ∈ E and any λ ∈ Vλ◦ . Indeed,

dĥ|UKν◦ (v(r, λ◦)) · wλ = c(r, λ◦)dQK(v(r, λ◦)) · wλ + dJΛ(r,λ◦)
LK

(v(r, λ◦)) · wλ. (3.12)

Note first that dQK(v(r, λ◦)) · wλ = 0 for all λ ∈ l∗. Also,

dJΛ(r,λ◦)
LK

(v(r, λ◦)) · wλ =
d

dt

∣∣∣∣
t=0

JΛ(r,λ◦)
LK

(v(r, λ◦ + tλ))

=
d

dt

∣∣∣∣
t=0

〈r2(λ◦ + tλ),Λ(r, λ◦)〉 = r2〈λ,Λ(r, λ◦)〉. (3.13)

This equality implies, together with hypotheses (H1) and (H2) that the multiplier Λ(r, λ) is a smooth
function in its variables Λ : E × Vλ◦ → l since it can be written as a composition of smooth functions,
namely

Λ(r, λ) =
1
r2

dĥ|UKν◦ (v(r, λ)) ·Dλv(r, λ). (3.14)

Even though in the previous equality it seems that there is a singularity at r = 0 we see in what follows
that it is not the case. Indeed, by hypothesis (H2) we can write

ĥ|UKν◦ (v(r, λ)) = r2 + α4r
4 + α6r

6 + · · ·+ αk−2r
k−2 + rkhk(ρ(r, λ)) + o(rk, λ), (3.15)

where α4, α6, . . . , αk−2 are real coefficients. It is easy to see from (3.15) that for any η ∈ l∗

dĥ|UKν◦ (v(r, λ)) · wη = rkdhk(ρ(r, λ)) ·Dλρ(r, λ) · η + o(rk, λ).

Given that by hypothesis (H2) k ≥ 4, expression (3.14) can be rewritten as

Λ(r, λ) = rk−2dhk(ρ(r, λ)) ·Dλρ(r, λ) · η + o(rk−2, λ),

where the smoothness of the function Λ(r, λ) is apparent as well as the fact that Λ(0, λ) = 0. These
two points together imply that the multiplier Λ(r, λ) can be made as small as we want by taking r
sufficiently close to the origin, as desired. This allows us to use the Normal Form Theorem to conclude
that for r small enough, the RPOs of ĥ|UKν◦ amount to RPOs of the original system.

We will now prove that the RPOs that we just obtained have relative periods close to Tν◦ by showing
that as r tends to zero, the multiplier c(r, λ) approaches to 1. We prove this point by pairing both sides
of (3.11) with the vector u := Drv(r, λ) · 1. First of all

dQK(v(r, λ)) · u =
d

dt

∣∣∣∣
t=0

QK(v(r + t, λ)) =
d

dt

∣∣∣∣
t=0

(r + t)2 = 2r. (3.16)
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Also,

dJΛ(r,λ)

LK
(v(r, λ)) · u =

d

dt

∣∣∣∣
t=0

〈JLK (v(r + t, λ)),Λ(r, λ)〉

=
d

dt

∣∣∣∣
t=0

〈(r + t)2λ,Λ(r, λ)〉 = 2r〈λ,Λ(r, λ)〉. (3.17)

From expression (3.15) it is easy to see that dĥ|UHν◦ (v(r, λ)) · u = 2r + o(r, λ). This equality, together
with (3.16) and (3.17) imply, when substituted in (3.11) paired with u that

1− c(r, λ) = 〈λ,Λ(r, λ)〉+ o(r, λ).

Since Λ(r, λ)→ 0 when r tends to zero then c(r, λ)→ 1 as r → 0, as claimed.

3.2.5 Dimensional estimate of the Lusternik–Schnirelmann category

In order to conclude the proof of the theorem we will give a dimensional estimate of the first part of the
estimate on the branches (3.4) whose relatively periodic character we just proved. In order to obtain
the claim (3.1) in the statement of the theorem we just need to show that

Cat
(
J−1
LK

(λ) ∩Q−1
K (1)/(Lλ × S1)

)
≥ 1

2
[dim(Uν◦)K − dim(N(K)/K)− dim(N(K)/K)λ] . (3.18)

We will prove this inequality with the help of Proposition 2.3, taking in its statement J−1
LK

(λ)∩Q−1
K (1)

as the submanifold N and Lλ × S1 the subgroup K. Given that the mapping JLK × 1
ν◦
QK is the

momentum map corresponding to the N(K)/K × S1–action on (Uν◦)K , the Reduction Lemma (see for
instance [1, Lemma 4.3.2]) guarantees the technical hypotheses (2.3), namely:

(Tz(J−1
LK

(λ) ∩Q−1
K (1)))ω = (kerTz(JLK ×

1
ν◦
QK))ω = Tz((N(K)/K × S1) · z), as well as,

Tz(J−1
LK

(λ) ∩Q−1
K (1)) ∩ Tz((N(K)/K × S1) · z) = Tz((Lλ × S1) · z),

for any z ∈ J−1
LK

(λ) ∩ Q−1
K (1). In order to apply Proposition 2.3 we need the isotropy subgroups of

any point in J−1
LK

(λ) ∩ Q−1
K (1) to be a finite subgroup of Lλ × S1. This is so by the freeness and the

locally freeness of the Lλ and S1–actions on (Uν◦)K , respectively, and by the fact proved in the third
part of Proposition 3.8 that J−1

LK
(λ) ∩Q−1

K (1) does not contain any N(K)/K–relative equilibria of the
system ((Uν◦)K , ω|(Uν◦ )K , Q|(Uν◦ )K ) that would be the only elements that could make the Lλ×S1–action
not be locally free. Consequently, by Proposition 2.3, there is a cohomology class θ ∈ K2(J−1

LK
(λ) ∩

Q−1
K (1)/(Lλ×S1);R) such that θk �= 0, with k = 1

2 (dim(J−1
LK

(λ)∩Q−1
K (1))−dim(Lλ×S1)). Therefore,

the cuplength of J−1
LK

(λ) ∩Q−1
K (1)/(Lλ × S1) is at least

1
2

[
dim

(
J−1
LK

(λ) ∩Q−1
K (1)

)
− dimLλ − 1

]
=

1
2

[dim(Uν◦)K − dimL− dimLλ − 2] ,

and hence, Proposition 2.4 establishes the inequality (3.18), which concludes the proof of the theorem.
�

Remark 3.10 The choice of the neighborhood B(K) in Proposition 3.8 guarantees that the RPOs
that we found in our theorem are nontrivial, that is, they are not just relative equilibria. Indeed, when
λ ∈ B(K), the level set of Q−1

K (1) intersects transversely the level set J−1
LK

(λ), which in part (iii) of
Proposition 3.8 allowed us to prove the inexistence of relative equilibria of the Hamiltonian vector field
XQK with respect to the N(K)/K–symmetry in J−1

LK
(λ)∩Q−1

K (1). Since the Hamiltonian h|(Uν◦ )K can
be considered as a perturbation of QK for vectors of norm r small enough, the transversality (which is
a stable property) of h|−1

(Uν◦ )K
(r) with respect to J−1

LK
(r2λ) is still valid, and therefore the inexistence of

N(H)/H–relative equilibria in J−1
LK

(r2λ) ∩ h|−1
(Uν◦ )H

(r) as well. �
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Remark 3.11 Even though the hypothesis (H1) appears in the proof of the theorem as a technical
necessity, it turns out that in its absence it is not possible the existence of genuine RPOs that are not
either relative equilibria or plain periodic orbits. Indeed, suppose that the restriction h|UKν◦ is purely
radial. In that case, h|UKν◦ is directly in normal form and there exists a real smooth function f : R→ R

such that h|UKν◦ (v) = f(QK(v)), v ∈ UKν◦ . In these circumstances, expression (3.11) reduces to

f ′(QK(v(r, λ)))dQK(v(r, λ)) = c(r, λ)dQK(v(r, λ)) + dJΛ(r,λ)

LK
(v(r, λ)),

which amounts to

dh|UKν◦ (v(r, λ))− dJ
Λ(r,λ)f′(QK (v(r,λ)))
f′(QK (v(r,λ)))−c(r,λ)

LK
(v(r, λ)) = 0,

that is, in the absence of hypothesis (H1) v(r, λ) is a branch of relative equilibria of the Hamiltonian
vector field associated to h (the reader interested in the technology for searching relative equilibria in the
hypotheses of Theorem 3.1, or even weaker, can check with [11, 56], and references therein). Note that
a trivial corollary of this comment is that if h is just quadratic and therefore its associated Hamiltonian
vector field is linear, then there are no genuine RPOs associated to its dynamics. On other words, the
relative periodic orbits around stable equilibria are purely non linear phenomena. �

3.3 Relative periodic orbits with prescribed spatiotemporal symmetry

In the statement of Theorem 3.1 we optimized the search for the RPOs of our system by looking for
them within the fixed point spaces corresponding to the isotropy subspaces of the G–action on Uν◦ . In
Section 2.2 we showed that the resonance space Uν◦ can actually be endowed with a G× S1–symmetry
which obviously contains more isotropy subgroups than merely the G–symmetry and that we could
therefore utilize to obtain additional relatively periodic solutions. However, the reader should not forget
that the S1–symmetry is a feature owned solely by the system in normal form; the real system that
we are dealing with is not S1–symmetric. This fact does not pose a problem since the morphism that
relates the S1–relative equilibria of the normal form equivalent system to the periodic orbits of the
original system transforms the S1–symmetry of the normal form Hamiltonian into a S1–symmetry of
the periodic solutions of the original system. The G×S1–action on the Tν◦–periodic solutions is defined
as (g, θ) · u(t) := g · u(t+ tθ

2π ), where u : R→ V is a smooth function such that u(t+ Tν◦) = u(t).
The use of the isotropy subgroups of the G × S1–symmetry of the normal form equivalent system

has been very fruitful in the symmetric bifurcation theory (see [20] for a taste of it).
In this section we will generalize Theorem 3.1 to the search of RPOs which, as solutions, have as

isotropy subgroup a nontrivial subgroup of G× S1. Before we get into the statement and proof of this
generalization we study in detail the G × S1–action and its subgroups, and we explain in detail what
we mean by nontrivial subgroups.

All along this section we will assume that the G–action on the resonance space Uν◦ is G–simple,
that is, Uν◦ contains a G–stable subspace which is either non absolutely irreducible or is isomorphic
to the direct sum of two copies of the same absolutely irreducible representation. In the Hamiltonian
symmetric framework, this hypothesis occurs generically [15, Theorem 3.3]. Under the G–simplicity
hypothesis we have the following result whose proof can be found in [20, Proposition 7.2, page 300]:

Proposition 3.12 Let H ⊂ G × S1 be an isotropy subgroup of the G × S1–action on the resonance
space Uν◦ . Let π : G×S1 → G be the projection on the first factor and K := π(H) ⊂ G. If the G–action
on Uν◦ is G–simple, then:

(i) π : H → K is an isomorphism, hence dimH = dimK.

(ii) There is a homomorphism θH : K → S1 such that

H = {(k, θH(k)) ∈ G× S1 | k ∈ K}.
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(iii) N(H) = NG(K)× S1.

Notice that, in the language of the previous proposition, the isotropy subgroups K of the G×S1–action
on Uν◦ considered in Theorem 3.1 are those for which the homomorphism θH is identically zero. These
are the so called spatial symmetries. The isotropy subgroups for which θH is different from zero are
called spatiotemporal symmetries, and they will be the subject of this section. The homomorphism
θH will be called the temporal character of H and its derivative at the identity ρH := TeθH ∈ k∗ the
temporal velocity of H. The symbol k denotes the Lie algebra of K and k∗ its dual. The temporal
velocity allows us to express the Lie algebra h of H in a very convenient form:

h = {(κ, TeθH(κ)) ∈ k× R | κ ∈ k} = {(κ, 〈ρH , κ〉) ∈ k× R | κ ∈ k}.

We are now in position to state a generalization of Theorem 3.1 that incorporates spatiotemporal
symmetries.

Theorem 3.13 Let (V, ω, h,G,J : V → g∗) be a Hamiltonian system with symmetry, with V a vector
space, and G a compact positive dimensional Lie group that acts on V in a linear and canonical fashion.
Suppose that h(0) = 0, dh(0) = 0 (that is, the Hamiltonian vector field Xh has an equilibrium at the
origin) and that the linear Hamiltonian vector field A := DXh(0) is non degenerate and contains ±iν◦
in its spectrum. Let Uν◦ be the resonance space of A with primitive period Tν◦ := 2π

ν◦
. Consider the

G×S1–action on Uν◦ , where the S1–action is induced by the semisimple part of A, and the Lie group G
acts simply on Uν◦ Let H = {(k, θH(k)) | k ∈ K ⊂ G} ⊂ G×S1 be an isotropy subgroup of the G×S1–
action on Uν◦ with temporal character θH , temporal velocity ρH ∈ k∗, and such that the quadratic form
QH on the H–fixed point space UHν◦ defined by

QH(v) :=
1
2
d2h(0)(v, v), v ∈ UHν◦

is definite. Then, for any χ◦ ∈ (k◦)K for which J|−1
(Uν◦ )H

(
χ◦ − 1

ν◦
ρH

)
∩ Q−1

H (1) is non empty (QH :=

QH |(Uν◦ )H ) there exists an open neighborhood Vχ◦ of χ◦ in (k◦)K such that for any χ ∈ Vχ◦ , the inter-

section J|−1
(Uν◦ )H

(
χ− 1

ν◦
ρH

)
∩Q−1

H (1) is a submanifold of (Uν◦)H of dimension dimUHν◦−dimN(H)/H.
Suppose that the following two generic hypotheses hold:

(H1) The restriction h|UHν◦ of the Hamiltonian h to the fixed point subspace UHν◦ is not radial with respect
to the norm associated to QH .

(H2) Let hk(v) := 1
k!d

kh(0)
(
v(k)

)
, v ∈ UHν◦ be the first non radial term in the Taylor expansion of

h|UHν◦ around zero. We will assume that k ≥ 4 and that the restrictions of hk to the submani-

folds J|−1
(Uν◦ )H

(
χ− 1

ν◦
ρH

)
∩ Q−1

H (1), with χ ∈ Vχ◦ , are Morse–Bott functions with respect to the

(NG(K)ρH ∩NG(K)χ)× S1–action.

Then, for any ε > 0 close enough to zero, χ ∈ Vχ◦ , and λ := Ξ∗(χ− 1
ν◦
ρH ,

1
ν◦

), there are at least

max
[
1
2

(
dimUHν◦ − dimNG(K)− dim (NG(K)ρH ∩NG(K)χ) + 2 dimK

)
, χE

(
EJ−1

LH
(λ)

)Lλ] (3.19)

distinct relative periodic orbits of Xh with energy ε, momentum ε(χ − 1
ν◦
ρH) ∈ g∗, isotropy subgroup

H, and relative period close to Tν◦ . By definition EJ−1
LH

(λ) := J|−1
(Uν◦ )H

(χ − sρH) ∩ Q−1
As

(sν◦) and

Lλ :=
(
(NG(K)sρH ∩NG(K)χ)× S1

)
. The symbol χE

(
EJ−1

LH
(λ)

)Lλ denotes the Lλ–Euler characteris-
tic of EJ−1

LH
(λ) (which in this case equals the standard Euler characteristic of the symplectic quotient

χE(EJ−1
LH

(λ)/Lλ).
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3.4 Proof of Theorem 3.13

In the sequel we will think of the Lie algebra k and its dual k∗ as subspaces of g and g∗, respectively, by
choosing in g an AdNG(K)–invariant inner product 〈·, ·〉 and making g = k ⊕ m, with m the orthogonal
complement to k in g with respect to 〈·, ·〉. If we use the inner product dual to 〈·, ·〉 we can write
g∗ = k∗ ⊕m∗.

We start the proof with the following proposition that provides several important facts about the
temporal velocity and its relation with the Lie algebras h and k of H and K, respectively:

Proposition 3.14 Let H ⊂ G × S1 be an isotropy subgroup of the G × S1–action on the resonance
space Uν◦ , where the G–action on Uν◦ is G–simple. Let K := π(H) ⊂ G, θH be the temporal character
of H, and ρH := TeθH ∈ k∗ be its temporal velocity. Then:

(i) ρH ∈ (k∗)K .

(ii) h◦ = {(−sρH + χ, s) ∈ g∗ × R | s ∈ R, χ ∈ k◦} = {(−sρH + µ, s) ∈ g∗ × R | s ∈ R, µ ∈ m∗},
where h◦ denotes the annihilator of h in g∗ × R and k◦ that of k in g∗.

(iii) (h◦)H = {(−sρH + χ, s) ∈ g∗ × R | s ∈ R, χ ∈ (k◦)K}

Proof (i) It is a consequence of the fact that the temporal character θH is a homomorphism. Indeed,
for any k ∈ K and η ∈ k we have that

〈Ad∗k−1ρH , η〉 = 〈ρH ,Adk−1η〉 = TeθH · Adk−1η =
d

dt

∣∣∣∣
t=0

θH(k−1 exp tηk) = TeθH · η = 〈ρH , η〉.

(ii) Recall that we think of k∗ as a subspace of g∗ by means of the splitting g∗ = k∗⊕m∗. By definition:

h◦ = {(η, s) ∈ g∗ × R | 〈η, κ〉+ sTeθH · κ = 0,∀κ ∈ k}
= {(η, s) ∈ g∗ × R | 〈η + sρH , κ〉 = 0,∀κ ∈ k}
= {(η, s) ∈ g∗ × R | η + sρ ∈ k◦}
= {(−sρH + χ, s) ∈ g∗ × R | s ∈ R, χ ∈ k◦}
= {(−sρH + µ, s) ∈ g∗ × R | s ∈ R, µ ∈ m∗}.

(iii) It is a straightforward consequence of the definition and the use of (i). �
We now study the globally Hamiltonian character of the G×S1–action on the resonance space Uν◦ .

The momentum map associated to this action is

EJ : Uν◦ −→ g∗ × Lie(S1)∗

v �−→
(
J|Uν◦ (v), 1

ν◦
QAs(v)

)
,

where QAs is the quadratic form 1
2ω(As·, ·) associated to the semisimple part As of the linearization A of

the Hamiltonian vector field Xh at the equilibrium. As a particular case of what we saw in Section 2.1
we have that the globally Hamiltonian G × S1–action on Uν◦ induces, for each isotropy subgroup
H ⊂ G× S1 globally Hamiltonian actions of L := N(H)/H on (Uν◦)H and UHν◦ with momentum maps
EJLH : UHν◦ → l∗ and EJLH : (Uν◦)H → l∗ associated to these actions given by

EJLH (v) = Ξ∗(EJ(v)), EJLH (v) = Ξ∗(EJ(v)),

where Ξ∗ : (h◦)H → l∗ is the natural N(H)/H–equivariant isomorphism between the H–fixed points in
the annihilator of h in g∗ × R and the dual of the Lie algebra l∗ of N(H)/H.

Note that since the N(H)/H–action on (Uν◦)H is free, the corresponding momentum map EJLH is a
submersion onto its image. Let ∆ : (h◦)H → (k◦)K×R be the isomorphism defined by ∆(−sρH+χ, s) =
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(χ, s). The mapping EJNK : (Uν◦)H → (k◦)K×R defined by EJNK := ∆◦EJ|(Uν◦ )H is also a submersion
onto its image that more specifically maps, for any v ∈ (Uν◦)H , as:

EJNK (v) = ∆ ◦EJ(v) = ∆
(
J(v),

1
ν◦
QH(v)

)
=

(
J(v) +

ρH
ν◦
QH(v),

1
ν◦
QH(v)

)
.

The following proposition justifies the notation utilized in the statement of the theorem and provides
the proof of a few facts that will be needed later on:

Proposition 3.15 We use the notation introduced in the previous paragraphs. Let λ ∈ l∗ be an element
in the image of EJLH such that λ = Ξ∗(−sρH + χ, s), for some s ∈ R and some χ ∈ (k◦)K . Then:

(i) EJ−1
LH

(λ) = EJ−1
NK

(χ, s) = J|−1
(Uν◦ )H

(χ − sρH) ∩ Q−1
H (sν◦). EJ−1

LH
(λ) is a submanifold of (Uν◦)H of

dimension

dimUHν◦ − dimNG(K) + dimK − 1. (3.20)

(ii) The coadjoint isotropy subgroup Lλ ⊂ L of λ ∈ l∗ can be written as Lλ = (NG(K)sρH ∩NG(K)χ)×
S1/H, where NG(K)sρH and NG(H)χ are the stabilizers of sρH ∈ k∗ ⊂ g∗ and χ ∈ (k◦)K with
respect to the coadjoint action of NG(K) on g∗.

(iii) The quotient EJ−1
LH

(λ)/Lλ is a symplectic manifold of dimension

dimUHν◦ − dimL− dimLλ = dimUHν◦ − dimNG(K)− dim (NG(K)sρH ∩NG(K)χ)− 2 + 2 dimK.

(iv) Let χ◦ ∈ (k◦)K be an element in (k◦)K such that the set Sχ◦ := J|−1
(Uν◦ )H

(
χ◦ − 1

ν◦
ρH

)
∩ Q−1

H (1)
is non empty and by part (i) a submanifold of dimension (3.20). Then, there is a neighborhood
Vχ◦ of χ◦ in (k◦)K such that for any χ ∈ Vχ◦ , the set Sχ := J|−1

(Uν◦ )H

(
χ− 1

ν◦
ρH

)
∩Q−1

H (1) is also
nonempty and therefore a manifold of (Uν◦)H of dimension (3.20).

Proof (i) Notice that if λ = Ξ∗(−sρH + χ, s), then

J|−1
(Uν◦ )H

(χ− sρH) ∩Q−1
As

(sν◦) = EJ−1
NK

(χ, s) = EJ|−1
(Uν◦ )H

(χ− sρH , s) = EJ|−1
(Uν◦ )H

((Ξ∗)−1(λ)) (3.21)

=
(
Ξ∗ ◦EJ|(Uν◦ )H

)−1 (λ) = EJ−1
LH

(λ).

Given that EJLH is the momentum map associated to a free and proper action it is a submersion and
its level sets are submanifolds. Therefore (3.21) has as a corollary that J|−1

(Uν◦ )H
(χ− sρH)∩Q−1

As
(sν◦) is

a submanifold of (Uν◦)H of dimension dim(Uν◦)H − dimN(H)/H. Now, as N(H) = NG(K) × S1 the
expression (3.20) follows.
(ii) Since Ξ∗ is N(H)/H–equivariant, we have that an arbitrary element (l, θ)H ∈ N(H)/H is actually
in the isotropy subgroup (N(H)/H)λ iff n · (−sρH + χ) = −sρH + χ. Given that ρH ∈ k∗, χ ∈ m∗, and
k∗ and m∗ are NG(K)–stable, then n · (−sρH + χ) = −sρH + χ iff n · (−sρH) = −sρH and n · χ = χ,
that is, iff n ∈ NG(K)sρH ∩NG(K)χ. Therefore,

(N(H)/H)λ = (NG(K)sρH ∩NG(K)χ)× S1/H.

(iii) It is a straightforward consequence of the Marsden–Weinstein Reduction Theorem [43] and points
(i) and (ii).
(iv) Let λ◦ = Ξ∗

(
χ◦ − 1

ν◦
ρH ,

1
ν◦
ρH

)
∈ l∗. By (i), Sχ◦ = EJ−1

LH
(λ◦). Since EJLH is the momentum

map corresponding to a free action on (Uν◦)H and therefore a submersion onto its image, the mapping
TvEJLH : Tv(Uν◦)H → l∗ is surjective, for any v ∈ Sχ◦ = EJ−1

LH
(λ◦). The Local Onto Theorem (see for

instance [2, Theorem 3.5.2]) implies the existence of an open neighborhood Wλ◦ of λ◦ in l∗ and an open
neighborhood Uv of v in (Uν◦)H such that the mapping EJLH |Uv : Uv →Wλ◦ is onto. In particular, for
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any λ ∈ Wλ◦ , the level set EJ−1
LH

(λ) is non empty and, by the submersion argument is a submanifold
of (Uν◦)H of dimension (3.20). We now construct the open neighborhood Vλ◦ of λ◦ whose existence we
claim in the statement of the Lemma. Firstly, the set T defined by T := ∆◦ (Ξ∗)−1(Wλ◦) ⊂ (k◦)K×R is
an open neighborhood of (χ◦, 1

ν◦
ρH). By the openness of T , there exist open neighborhoods Vχ◦ ⊂ (k◦)K

and W 1
ν◦ ρH

⊂ R, of χ◦ and 1
ν◦
ρH , respectively, such that Vχ◦ ×W 1

ν◦ ρH
⊂ T . Vχ◦ is the neighborhood

needed in the statement. �
We now prove a result that constitutes the spatiotemporal analog of Lemma 3.9. Let ĥ|UHν◦ be the

equivalent Hamiltonian in normal form associated to h|UHν◦ .

Lemma 3.16 Suppose that we are under the hypotheses of Theorem 3.13. Then, the restriction of
the function hk ∈ C∞(UHν◦) defined by hk(u) := 1

k!d
kh|UHν◦ (0)(u(k)), to the level sets of the form

J|−1
(Uν◦ )H

(
χ− 1

ν◦
ρH

)
∩ Q−1

H (1), where χ sits in Vχ◦ , the neighborhood of χ◦ ∈ (k◦)K introduced in
the previous Lemma, has at least

max
[
1
2

(
dimUHν◦ − dimNG(K)− dim (NG(K)ρH ∩NG(K)χ) + 2 dimK

)
, χE

(
EJ−1

LH
(λ)

)Lλ] (3.22)

distinct critical orbits, where λ := Ξ∗(χ − 1
ν◦
ρH ,

1
ν◦

) and χE
(
EJ−1

LH
(λ)

)Lλ denotes the Lλ–Euler char-
acteristic of EJ−1

LH
(λ).

Furthermore, let χ′ ∈ Vχ◦ ⊂ (k◦)K be arbitrary but fixed and let {u1, . . . , uk} be the set of critical

points of the restriction of the function hk to the level set J|−1
(Uν◦ )H

(
χ′ − 1

ν◦
ρH

)
∩ Q−1

H (1), provided
by (3.22). Then, for each ui, i ∈ {1, . . . , k}, there exist a neighborhood E ⊂ R of the origin in the real
line, a neighborhood Vχ′ ⊂ Vλ◦ ⊂ (k◦)K of χ′ in (k◦)K , and a smooth function ρ : E × Vχ′ → Q−1

H (1)
such that ρ(0, χ′) = ui and also, the function v : E × Vχ′ → UHν◦ defined by v(r, χ) := rρ(r, χ) satisfies
that:

(i) v(r, χ) ∈ (Uν◦)H iff r �= 0.

(ii) QH(v(r, χ)) = r2 and J(v(r, χ)) = r2(χ− 1
ν◦
ρH), r ∈ E, χ ∈ Vχ′ .

(iii) dĥ|UHν◦ |J|−1
(Uν◦ )H

(r2(χ− 1
ν◦ ρH))∩Q−1

H (r2)(v(r, χ)) = dĥ|UHν◦ |EJ−1
NK

(r2χ, r
2
ν◦ )

(v(r, χ)) = 0, that is, the branches

v(r, χ) are made of critical points of the restriction of the function ĥ|UHν◦ to the level sets

J|−1
(Uν◦ )H

(
r2(χ− 1

ν◦
ρH)

)
∩Q−1

H (r2).

Proof The estimate (3.22) is a straightforward consequence of Proposition 3.15, Corollary 2.5, the
statement (2.7), and the invariance properties of hk.

We now construct the branches v(r, χ) in a fashion similar to Lemma 3.9. Let χ′ ∈ Vχ◦ ⊂ (k◦)K

be arbitrary but fixed and let u0 be one of the critical points of the restriction of the function hk to
the level set J|−1

(Uν◦ )H

(
χ′ − 1

ν◦
ρH

)
∩Q−1

H (1), provided by (3.22). Since by Proposition 3.15 any element

of the form (χ, 1
ν◦

) with χ ∈ Vχ◦ is a regular value of EJNK , there exist neighborhoods Vχ′ ⊂ Vχ◦
of χ′, W 1

ν◦
of 1

ν◦
in R, W of the origin in Rs, with s = dimUHν◦ − dim(k◦)K − 1, and a mapping

ψ : Vχ′ ×W ×W 1
ν◦
→ UHν◦ which is a diffeomorphism onto its image. The mapping ψ satisfies that

ψ(χ′, 0, 1
ν◦

) = u0 and EJNK (ψ(χ,w, l)) = (χ, l), which is equivalent to having that J(ψ(χ,w, l)) =
χ − lρH and QH(ψ(χ,w, l)) = lν◦. Let ϕ : Vχ′ ×W → Q−1

H (1) be the mapping defined by (χ,w) �−→
ψ(χ,w, 1

ν◦
). This map constitutes a local chart around the point u0 in Q−1

H (1). Exactly as we did in
Lemma 3.9, we can factor out the (NG(K)ρH ∩NG(K)χ′)× S1–action in this chart which allows us to
prove the Lemma by mimicking what we did in the proof of Lemma 3.9 starting from expression (3.6).
�
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Let now χ′ ∈ Vχ◦ and v : E × Vχ′ → UHν◦ be one of the branches associated that we introduced in
Lemma 3.16. By construction,

ĥ|UHν◦ |J|−1
(Uν◦ )H

(r2(χ− 1
ν◦ ρH))∩Q−1

H (r2)(v(r, χ)) = dĥ|UHν◦ |EJ−1
NK

(r2χ, r
2
ν◦ )

(v(r, χ)) = 0.

Since EJNK maps into (k◦)K × R, the Lagrange Multipliers Theorem guarantees the existence of an
element Λ(r, χ) ∈

(
(k◦)K

)∗ and c(r, χ) ∈ R such that

dĥ|UHν◦ (v(r, λ)) = [c(r, λ) + 〈ρH ,Λ(r, λ)〉]dQH(v(r, λ)) + d(J|UHν◦ )
Λ(r,λ)(v(r, λ)), (3.23)

which implies that v(r, λ) is a periodic point of the Hamiltonian vector field X
ĥ|UHν◦

−(J|UHν◦
)Λ(r,λ) . If we

are able to prove that Λ(r, λ) becomes very small as r → 0, the Normal Form Theorem will guarantee
that v(r, λ) will amount to a periodic point ofXh|UHν◦−(J|UHν◦

)Λ(r,λ) = Xh|UHν◦
−(Λ(r, λ))UHν◦ , that is, a RPO

of Xh (the symbol (Λ(r, λ))UHν◦ denotes the vector field defined by (Λ(r, λ))UHν◦ (v) = d
dt

∣∣
t=0

exp tΛ(r, λ) ·
v, v ∈ UHν◦ . It is easy to show that this is a well defined vector field on UHν◦ since exp tΛ(r, λ) · v ∈
UHν◦ whenever v ∈ UHν◦). Actually it can be easily proved by mimicking what we did in the proof of
Theorem 3.1 after (3.11), that Λ(r, χ) and c(r, χ) are smooth functions that tend to zero and one,
respectively, as the variable r tends to zero. �

Remark 3.17 As we already pointed out in the introduction Theorem 3.13 is NOT a generalization of
Theorem 3.1. In the proof of Theorem 3.1 intervenes a transversality argument that guarantees that all
the solutions obtained are genuine RPOs and not just relative equilibria. This is explicitly mentioned
in its statement. Even though the spatial symmetries in the relative periodic solutions predicted in
Theorem 3.1 are a particular case of the spatiotemporal symmetries treated in Theorem 3.13 one does
not generalize the other since the subgroups of G×S1 intertwine the G and S1–actions via the temporal
character preventing us from making the distinction between RPOs and relative equilibria. In short, we
cannot guarantee that the RPOs provided by Theorem 3.13 are not just relative equilibria. �

4 Relative periodic orbits around stable relative equilibria

In this section we will use the so called Marle–Guillemin–Sternberg (MGS) normal form and the recon-
struction equations in order to generalize the main result in the previous section to the search of RPOs
around genuine relative equilibria.

4.1 The MGS normal form and the reconstruction equations

Since this topic has been already introduced already in many other papers we will just briefly sketch
the results that we will need in our exposition, and will leave the reader interested in the details consult
the original papers [41, 23]. Regarding the reconstruction equations the reader is encouraged to check
with [52, 60, 55].

All along this section we will work with a G–Hamiltonian system (M,ω, h,G,J), where the Lie group
G acts in a proper and globally Hamiltonian fashion on the manifold M . Let m be a point in M such
that J(m) = µ ∈ g∗ and Gm denotes the isotropy subgroup of the point m. We denote by gµ the Lie
algebra of the stabilizer Gµ of µ ∈ g∗ under the coadjoint action of G on g∗. We now choose in kerTmJ a
Gm–invariant inner product, 〈·, ·〉, always available by the compactness of Gm. Using this inner product
we define the symplectic normal space Vm at m ∈M with respect to the inner product 〈·, ·〉, as the
orthogonal complement of Tm(Gµ ·m) in kerTmJ, that is, kerTmJ = Tm(Gµ ·m)⊕Vm, where the symbol
⊕ denotes orthogonal direct sum. It is easy to verify that (Vm, ω(m)|Vm) is a Gm–invariant symplectic
vector space. Let B0 : V ∗m → Vm be the isomorphism associated to the symplectic form ω(m)|Vm

Recall that by the equivariance of J, the isotropy subgroup Gm of m is a subgroup of Gµ and
therefore gm = Lie(Gm) ⊂ gµ. Using again the compactness of Gm, we construct an inner product
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〈·, ·〉 on g, invariant under the restriction to Gm of the adjoint action of G on g. Relative to this inner
product we can write the following orthogonal direct sum decompositions g = gµ⊕ q, and gµ = gm⊕m,
for some subspaces q ⊂ g and m ⊂ gµ. The inner product also allows us to identify all these Lie algebras
with their duals. In particular, we have the dual orthogonal direct sums g∗ = g∗µ⊕q∗ and g∗µ = g∗m⊕m∗

which allow us to consider g∗µ as a subspace of g∗ and, similarly, g∗m and m∗ as subspaces of g∗µ.
The Gm–invariance of the inner product utilized to construct the splittings gµ = gm ⊕ m and

g∗µ = g∗m ⊕ m∗, implies that both m and m∗ are Gm–spaces using the restriction to them of the Gm–
adjoint and coadjoint actions, respectively.

The importance of all these objects is in the fact that there is a positive number r > 0 such that,
denoting by m∗r the open ball of radius r relative to the Gm–invariant inner product on m∗, the manifold
Yr := G×Gm (m∗r × Vm) can be endowed with a symplectic structure ωYr with respect to which the left
G–action g · [h, η, v] = [gh, η, v] on Yr is globally Hamiltonian with Ad∗–equivariant momentum map
JYr : Yr → g∗ given by JYr ([g, ρ, v]) = Ad∗g−1 · (µ + ρ + JVm(v)). Moreover, there exist G–invariant
neighborhoods U of m in M , U ′ of [e, 0, 0] in Yr, and an equivariant symplectomorphism φ : U → U ′

satisfying φ(m) = [e, 0, 0] and JYr ◦ φ = J. On other words, the twisted product Yr can be used as
a coordinate system in a tubular neighborhood of the orbit G · m. This semi–global coordinates are
referred to as the MGS normal form.

In what follows we will use the MGS coordinates to compute the equations that describe the dynamics
induced by the Hamiltonian vector field corresponding to a G–invariant Hamiltonian. These are called
the bundle [60] or reconstruction [52] equations. Let h ∈ C∞(Y )G be a G–invariant Hamiltonian on Y .
Our aim is to compute the differential equations that determine the G–equivariant Hamiltonian vector
field Xh ∈ X(Y ) associated to h and characterized by iXhωY = dh.

Since the projection π : G×m∗×Vm → G×H (m∗×Vm) is a surjective submersion, there are always
local sections available that we can use to locally express Xh = Tπ(XG, Xm∗ , XVm), with XG, Xm∗ and
XVm locally defined smooth maps on Y and having values in TG, Tm∗ and TVm respectively. Thus,
for any [g, ρ, v] ∈ Y , one has XG([g, ρ, v]) ∈ TgG, Xm∗([g, ρ, v]) ∈ Tρm∗ = m∗, and XVm([g, ρ, v]) ∈
TvVm = Vm. Moreover, using the AdGm–invariant decomposition of the Lie algebra g: g = gm ⊕ m ⊕
q, the mapping XG can be written, for any [g, ρ, v] ∈ Y , as XG([g, ρ, v]) = TeLg

(
Xgm([g, ρ, v]) +

Xm([g, ρ, v])+Xq([g, ρ, v])
)
, with Xgm , Xm, and Xq, locally defined smooth maps on Y with values in

gm, m, and q respectively. Also, note that since h ∈ C∞(G×H (m∗×Vm))G is G–invariant, the mapping
h ◦ π ∈ C∞(G×m∗ × Vm)H can be understood as a H–invariant function that depends only on the m∗

and Vm variables, that is, h ◦ π ∈ C∞(m∗ × Vm)H .
Using these ideas and the explicit expression of the symplectic form ωYr we can explicitly write

down the differential equations that determine the components of Xh. In order to do so we first
implicitly define a function η : gµ × q → q∗ such that η(ξ, 0) = 0 for all ξ ∈ gµ and that for ρ ∈ m∗,

v ∈ Vm small enough satisfies Pq∗

(
ad∗(Xm+η(Xm,ρ+JVm (v)))(ρ+ JVm(v) + µ)

)
= 0. If we define ψ(ρ, v) :=

η(Dm∗(h ◦ π), ρ+ JVm(v)), then:

Xgm = 0 (4.1)
Xq = ψ(ρ, v) (4.2)

Xm = Dm∗(h ◦ π) (4.3)

XVm = B0Vm(DVm(h ◦ π)) (4.4)

Xm∗ = Pm∗

(
ad∗Dm∗ (h◦π)ρ+ ad∗Dm∗ (h◦π)JVm(v) + ad∗ψ(ρ,v)(ρ+ JVm(v))

)
. (4.5)

The previous equations admit severe simplifications in the presence of various Lie algebraic hy-
potheses. See [60] for an extensive study. For future reference we will note two particularly important
cases:
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• The Lie algebra g is Abelian: in that case Xm∗ = Xq = 0 at any point.

• The point µ ∈ g∗ is split [21], that is, the Lie algebra gµ of the coadjoint isotropy of µ admits a
AdGµ–invariant complement in g: in that case the mappings η and ψ are identically zero.

4.2 The main estimate

The following result generalizes theorems 3.1 and 3.13 to the search of RPOs around stable relative
equilibria

Theorem 4.1 Let (M,ω, h,G,J) be a Hamiltonian G–space. Let m ∈ M be a relative equilibrium of
this system with velocity ξ ∈ g, isotropy Gm, J(m) = µ ∈ g∗, and h(m) = 0. Let Vm ⊂ TmM be
any symplectic normal space through the point m, QVm := 1

2d
2
(
h− JPmξ

)
(m)|Vm , and AVm := XQVm .

Suppose that for Vm (and hence for any other symplectic normal space) the infinitesimally symplectic
linear map AVm is non singular and has ±iν◦ as eigenvalues. Let Uν◦ be the Gm × S1–symmetric
resonance space of AVm with primitive period Tν◦ (the S1–action is generated by the semisimple part of
the restriction of AVm to Uν◦). Let H ⊂ Gm × S1 be an isotropy subgroup of the Gm × S1–action on
Uν◦ . If H is not a purely spatial subgroup of Gm × S1 we assume that the Gm–action on Uν◦ is simple,
and hence it has an associated temporal character θH such that

H = {(f, θH(f)) | f ∈ K ⊂ Gm}

and a well defined temporal velocity ρH := TeθH ∈ k∗.
Suppose that d2

(
h− JPmξ

)
(m)|UHν◦ is a definite quadratic form. We consider two cases:

(i) If ρH = 0 and JVm |−1
(Uν◦ )H

(0) ∩Q−1
Vm

(1) is nonempty then, for any ε > 0 small enough, there exist
generically

max
[
1
2

(
dimUHν◦ − 2 dimNGm(K) + 2 dimK

)
, χE

(
JVm |−1

(Uν◦ )H
(0) ∩Q−1

Vm
(1)

)NGm (K)×S1]
(4.6)

distinct RPOs of Xh with energy ε, momentum µ ∈ g∗, relative period close to Tν◦ , and isotropy
subgroup Gm.

(ii) If ρH �= 0 and χ◦ ∈ (k◦)K is such that JVm |−1
(Uν◦ )H

(
χ◦ − 1

ν◦
ρH

)
∩ Q−1

Vm
(1) is non empty, assume

that ONE of the following hypotheses holds:

1. The Lie algebra g is Abelian.

2. The Lie algebra gµ is Abelian and µ is split.

3. gm = gµ.

Then, there exists an open neighborhood Vχ◦ of χ◦ in (k◦)K such that for any χ ∈ Vχ◦ , the

intersection JVm |−1
(Uν◦ )H

(
χ− 1

ν◦
ρH

)
∩Q−1

Vm
(1) is a submanifold of (Uν◦)H of dimension dimUHν◦ −

dimNGm×S1(H)/H. Moreover, for any ε > 0 close enough to zero and χ ∈ Vχ◦ , there are
generically at least

max
[
1
2

(
dimUHν◦ − dimNGm(K)− dim (NGm(K)ρH ∩NGm(K)χ) + 2 dimK

)
,

χE

(
JVm |−1

(Uν◦ )H
(χ− 1

ν◦
ρH) ∩Q−1

Vm
(1)

)(NGm (K)ρH∩NGm (K)χ)×S1]
(4.7)

distinct relative periodic orbits of Xh with energy ε, momentum µ + ε(χ − 1
ν◦
ρH) ∈ g∗, isotropy

H, and relative period close to Tν◦ .
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The symbol JVm denotes the momentum map associated to the linear action of Gm on Vm. The
projections Pgm and Pm are consistent with a given AdGm–invariant splitting g = gm⊕m⊕ q of the Lie
algebra g.

Remark 4.2 The reader interested in the relation between the hypothesis on the definiteness of the
quadratic form d2

(
h− JPmξ

)
(m)|Vm and the actual nonlinear stability of the relative equilibrium is

encouraged to check with [35, 54, 59], and references therein. �

Proof of the Theorem A straightforward computation shows that the Hessian in the statement of
the theorem is well defined and that the hypotheses on it do not depend on the choice of symplectic
normal space Vm.

Given the local nature of the statement, we can use the MGS coordinates to carry out the proof of the
theorem. For simplicity in the exposition we will identify points and maps in M and their counterparts
in the MGS coordinates Y . Those coordinates can be chosen so that the point m is represented by
[e, 0, 0] ∈ G×Gm (m∗ × Vm) and the submanifold Σm := {e}×Gm ({0}× Vm) ⊂ Y is such that TmΣm is
a symplectic normal space at m, that is, kerTmJ = TmΣm ⊕ Tm(Gµ ·m).

Notice that in MGS coordinates the point m ≡ [e, 0, 0] is a relative equilibrium of the Hamiltonian
vector field Xh with velocity ξ when

Xh(m) = T(e,0,0)π(ξ, 0, 0) (4.8)

and the associated flow behaves as Ft(m) = [exp tξ, 0, 0].
We now define the function hVm ∈ C∞(Vm)Gm as hVm(v) = h ◦ π(0, v), for each v ∈ Vm. Moreover,

notice that by (4.8) and the reconstruction equation (4.4)

dhVm(0) = DVm(h ◦ π)(0, 0) = B5Vm(XVm(0, 0, 0)) = 0,

where B ∈ Λ2(Vm×Vm) is the Poisson tensor associated to the symplectic form ωVm := ω|Vm . Also, for
any v, w ∈ Vm:

d2(h− JPmξ)([e, 0, 0])(T(e,0,0)π(0, 0, v), T(e,0,0)π(0, 0, w)) =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(h− JPmξ)([e, 0, tv + sw])

= d2hVm(0)(v, w)− d

dt

∣∣∣∣
t=0

〈TtvJVm · w,Pmξ〉 = d2hVm(0)(v, w),

since TtvJVm ·w ∈ g∗m for any t. Therefore, the hypothesis on the non degeneracy of d2(h−JPmξ)(m)|Uν◦
implies the non degeneracy of d2hVm(0)|Uν◦ .

We now apply Theorem 3.13 to the equilibrium that the system (Vm, ωVm , hVm , Gm,JVm) has at the
origin. If we use isotropy subgroups of theGm×S1–action on Vm with temporal velocity equal to zero and
look for RPOs such that χ = 0, Theorem 3.13 provides us with (4.6) RPOs for (Vm, ωVm , hVm , Gm,JVm)
with JVm momentum equal to zero. The general case with non zero temporal character and arbitrary
χ gives us (4.7) relatively periodic solutions with JVm momentum equal to ε(χ− 1

ν◦
ρH).

In the remainder of the proof we will use these Gm–relative periodic orbits in Vm to construct G–
relative periodic orbits in the original system using the reconstruction equations. We will first establish
the estimate (4.6) on the number of RPOs with momentum equal to µ: let v ∈ Vm be one of the Gm–
relative periodic orbits of (Vm, ωVm , hVm , Gm,JVm) with JVm momentum equal to zero. If we look at
the reconstruction equation (4.5) taking into account that JVm(v) = 0 we obtain that the point [e, 0, v]
is such that X∗m([e, 0, v]) = 0 and therefore it is necessarily a G–relative periodic point of Xh. Notice
that, given the expression of the momentum map in MGS coordinates, this RPO has momentum exactly
equal to µ.

As to the estimate (4.7), consider now one of the RPOs of (Vm, ωVm , hVm , Gm,JVm) with JVm momen-
tum equal to ε(χ− 1

ν◦
ρH). Additionally, suppose that we are in any of the first two cases contemplated

in the Lie algebraic hypotheses in the statement of the theorem, that is, either the Lie algebra g is
Abelian or gµ is Abelian and µ is split. It is easy to see by looking at the reconstruction equation (4.5)
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that in any of those two cases X∗m = 0 at any point and therefore if v ∈ Vm is one of the Gm–RPOs
of (Vm, ωVm , hVm , Gm,JVm) the point [e, 0, v] is necessarily a G–RPO of the original system, with G–
momentum map µ+ ε(χ− 1

ν◦
ρH) ∈ g∗ and isotropy subgroup H. If we are under hypothesis 3, the fact

that gm = gµ implies that m∗ = 0 and therefore the argument that we just used can be applied to the
points of the form [e, v]. �
Conclusions. In this paper we have proved results that give estimates on the number of relative
periodic orbits around given stable equilibria and relative equilibria.

The approach taken in the proofs carries in its wake some limitations in our results. For instance,
discrete symmetries are invisible by the momentum map. It is our belief that results in this direction
can only be obtained by taking a global variational approach that the author is already studying and
that will be the subject of a future work.

This global variational approach seems also to be the only way to obtain global generalizations
of the local results stated throughout the paper, similar to those obtained in the past regarding the
Weinstein–Moser Theorem (see for instance [17, 3, 25], an references therein) where, by substituting the
stability condition by convexity hypotheses, estimates regarding the existence of periodic orbits could
be formulated for any convex energy level set.
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[19] Golubitsky, M. and Stewart, I. With an appendix by J. E. Marsden. [1987] Generic bifurcation of Hamilto-
nian systems with symmetry. Physica D, 24, 391–405.

[20] Golubitsky, M., Stewart, I., and Schaeffer, D.G. [1988] Singularities and Groups in Bifurcation Theory: Vol.
II. Applied Mathematical Sciences, Vol. 69, Springer–Verlag.

[21] Guillemin, V., Lerman, E., and Sternberg, S. [1996] Symplectic Fibrations and Multiplicity Diagrams. Cam-
bridge University Press.

[22] Guillemin, V. and Pollack, A. [1974] Differential Topology. Prentice–Hall.

[23] Guillemin, V. and Sternberg, S. [1984] A normal form for the moment map. In Differential Geometric
Methods in Mathematical Physics. S. Sternberg ed. Mathematical Physics Studies, 6. D. Reidel Publishing
Company.

[24] Guillemin, V. and Sternberg, S. [1984] Symplectic Techniques in Physics. Cambridge University Press.

[25] Hofer, H., and Zehnder, E. [1995] Symplectic invariants and Hamiltonian dynamics. In The Floer Memo-
rial Volume. Pages 525–544. Taubes, C. H., Weinstein, A., and Zehnder, E. (editors). Birkhäuser Verlag,
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