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Contributions

The universal approximation properties of three important
families of reservoir computers (RC) are shown. We
prove that both in deterministic and stochastic setups and
for discrete-time semi-infinite inputs. We show that:
1 Linear reservoir systems with either polynomial or neural

network readout maps are universal;
2 Two RC families with linear readouts, namely, state-affine

systems (SAS) and echo state networks (ESN) (the most
widely used RC systems in applications) are universal.
The linearity in the readouts is a key feature in supervised
machine learning. It guarantees that these systems can be
used in high-dimensional/large-volume dataset situations.

In the stochastic case proofs of two different types are con-
structed, in order to establish the universality of the RC
systems with respect to L∞ and Lp-type criteria.

Mathematical model for reservoir
computing

A reservoir computer (RC) is a particular case of re-
current neural network (RNN):

󰀫
xt = F (xt−1, zt),
yt = h(xt),

where a reservoir map F : RN ×Rn −→ RN and a read-
out map h : RN → Rd transform (or filter) an infinite
discrete-time input z = (. . . , z−1, z0, z1, . . .) ∈ (Rn)Z into
an output signal y ∈ (Rd)Z. Additionally,
• zt ∈ Rn is the input, xt ∈ RN is the reservoir state.
• The static readout h : RN → Rd is trained in order to

obtain the desired output yt out of the input zt.
• Different readouts can be trained on the same reservoir

output for different tasks (multitasking).
Goal: identify families of reservoir filters that are able to
uniformly approximate any time-invariant, causal, and fad-
ing memory filter with deterministic or stochastic in-
puts with any desired degree of accuracy. Such families of
reservoir computers are said to be universal.

Reservoir systems

Linear reservoirs with a polynomial readout:
󰀫

xt = Axt−1 + czt, A ∈ MN , c ∈ MN,n,

yt = h(xt), h ∈ R[x].
(1)
(2)

Non-homogeneous state-affine systems (SAS):
Let p(z) ∈ MN,N [z] and q(z) ∈ MN,1[z] be two polynomials
on the variable z with matrix coefficients, that is

p(z) := A0 + zA1 + z2A2 + · · · + zn1An1,

q(z) := B0 + zB1 + z2B2 + · · · + zn2Bn2,

the SAS associated to p, q and W is:
󰀫

xt = p(zt)xt−1 + q(zt),
yt = W⊤xt.

(3)
(4)

Echo state networks (ESN):
󰀫

xt = σ (Axt−1 + Czt + ζ) ,

yt = Wxt.

(5)
(6)

Setups and tools

Deterministic setup: [3, 2]
• The Stone-Weierstrass theorem for polynomial

subalgebras of real-valued functions defined on compact
metric spaces.

• Internal approximation theorem: universality in
the space of reservoir maps translates into universality
into the space of reservoir filters.

Stochastic setup: [3, 1]
• L∞ criterion using a transfer theorem: fading memory

universal filters with deterministic uniformly bounded
inputs have the same properties when presented with
stochastic almost surely uniformly bounded inputs.

• Lp criterion: allows to cover a more general class of input
signals. Allows us to formulate universality results for
filters that do not necessarily have the fading memory
property. Only measurability is required.

Universality: the deterministic setup

Theorem (Reservoir family is universal)

The set of all reservoir filters Rw := {HF
h : KM −→

R | h ∈ C∞(DN), F : DN × Bn(0, M) −→ DN} with
inputs in the set KM of uniformly bounded sequences by
a constant M and that have the fading memory property
(FMP) w.r.t. a given weighted norm 󰀂 · 󰀂w is universal,
that is, it is dense in the set (C0(KM), 󰀂·󰀂w) of real-valued
continuous functions on (KM , 󰀂 · 󰀂w). In other words, let
A(Rw) be the polynomial algebra generated by Rw, then
any causal, time-invariant FMP filter H : KM −→ R
can be uniformly approximated by elements in A(Rw),
that is, for any 󰂃 > 0

󰀂H − HF
h 󰀂∞ := sup

z∈KM

|H(z) − HF
h (z)| < 󰂃.

Corolary (Universality of linear reservoirs)

The set L󰂃 formed by all the linear reservoir systems as in
(1)-(2) with matrices A ∈ MN such that σmax(A) < 1 − 󰂃
is made of λρ-exponential fading memory reservoir func-
tionals, with λρ := (1−󰂃)ρ, for any ρ ∈ (0, 1). This family
is dense in (C0(KM), 󰀂·󰀂wρ). The same universality result
can be stated for two smaller subfamilies of L󰂃 generated
by diagonal and nilpotent matrices.

Theorem (Universality of SAS)

Let IZ− := {z ∈ RZ− | zt ∈ [−1, 1], for all t ≤ 0},
and let S󰂃 be the family of functionals Hp,q

W : IZ− −→ R
induced by the state-affine systems in (3)-(4) that sat-
isfy that Mp := maxz∈I 󰀂p(z)󰀂2 < 1 − 󰂃 and Mq :=
maxz∈I 󰀂q(z)󰀂2 < 1 − 󰂃. The subfamily S󰂃 is dense in
(C0(IZ−), 󰀂 · 󰀂wρ).
Equivalently, for any fading memory filter H and any
󰂃 > 0, there ∃ N ∈ N, polynomials p(z) ∈ MN [z], q(z) ∈
MN,1[z] with Mp, Mq < 1 − 󰂃, and a vector W ∈ RN s.t.

󰀂H − Hp,q
W 󰀂∞ := sup

z∈IZ−
|H(z) − Hp,q

W (z)| < 󰂃.

The same universality result can be stated for the smaller
SAS subfamily determined by nilpotent polynomials.

Universality: the stochastic setup

Theorem (Deterministic-stochastic transfer
principle)

Let M > 0 and let KM and KL∞
M be the sets of determin-

istic and stochastic uniformly bounded inputs.
• Let H : (KM , 󰀂·󰀂w) −→ R be a causal and

time-invariant filter. Then H has the fading memory
property if and only if the corresponding filter with
almost surely uniformly bounded inputs has almost
surely bounded outputs, that is,
H : (KL∞

M , 󰀂 · 󰀂L∞
w
) −→ L∞(Ω,R), and it has the fading

memory property.
• Let T := {Hi : (KM , 󰀂·󰀂w) −→ R | i ∈ I} be a family

of causal and time-invariant fading memory filters.
Then, T is dense in the set (C0(KM), 󰀂 · 󰀂w) if and
only if the corresponding family with inputs in KL∞

M is
universal in the set of continuous maps of the type
H : (KL∞

M , 󰀂 · 󰀂L∞
w
) −→ L∞(Ω,R).

Theorem (Universality of SAS reservoir
computers with stochastic inputs)

Let KL∞
I ⊂ L∞(Ω,RZ−) be the set of a.s. uniformly

bounded processes in the interval I = [−1, 1]. Let S󰂃 be
the family of functionals Hp,q

W : KL∞
I −→ L∞(Ω,R) in-

duced by the SAS that satisfy Mp := maxz∈I 󰀂p(z)󰀂 < 1−󰂃
and Mq := maxz∈I 󰀂q(z)󰀂 < 1 − 󰂃. The family S󰂃 forms a
polynomial subalgebra of Rwρ with wρ

t := (1 − 󰂃)ρt, made
of FM reservoir filters that map into L∞(Ω,R).
For any time-invariant and causal FM filter H : (KL∞

I , 󰀂·
󰀂L∞

wρ) −→ L∞(Ω,R) and any 󰂃 > 0, there exists N ∈
N, polynomials p(z) ∈ MN,N [z], q(z) ∈ MN,1[z] with
Mp, Mq < 1 − 󰂃, and a vector W ∈ RN such that

󰀂H − Hp,q
W 󰀂∞ := sup

z∈KL∞
I

󰀂H(z) − Hp,q
W (z)󰀂L∞ < 󰂃.

The same universality result can be stated for SAS reser-
voir systems with nilpotent polynomials p(z) ∈ Nil[z].

Theorem (Internal approximation)

let F1, F2 : B󰀂·󰀂(0, L) × B󰀂·󰀂(0, M) −→ B󰀂·󰀂(0, L) be two
continuous reservoir maps such that F1 is a contraction
with constant 0 < r < 1 and F2 has the existence of
solutions property. Let UF1, UF2 : KM −→ KL be the
corresponding filters (if F2 does not have the ESP, then
UF2 is just a generalized filter). Then, for any 󰂃 > 0, we
have that

󰀂F1 − F2󰀂∞ < δ(󰂃) := (1 − r)󰂃
implies that

|||UF1 − UF2|||∞ < 󰂃.

Internal approximation in connection with the classical uni-
versality theorems for one-hidded-layer feedforward neural
networks yields the universality of ESNs.

Echo state networks are universal

Let U : IZ−
n −→

󰀓
Rd

󰀔Z− be a causal and time-invariant
filter that has the fading memory property. Then, for
any 󰂃 > 0 and any weighting sequence w, there is an
echo state network

󰀫
xt = σ (Axt−1 + Czt + ζ) ,

yt = Wxt.

(7 )
(8 )

whose associated generalized filters UESN satisfy that
|||U − UESN|||∞ < 󰂃. (9 )

In these expressions C ∈ MN,n for some N ∈ N, ζ ∈ RN,
A ∈ MN,N, and W ∈ Md,N. The function σ : RN −→
[−1, 1]N in (7) is constructed by componentwise applica-
tion of a continuous squashing function σ : R −→ [−1, 1].
When the approximating echo state network (7)-(8) sat-
isfies the echo state property, then it has a unique filter
UESN associated which is necessarily time-invariant. The
corresponding reservoir functional HESN : IZ−

n −→ Rd sat-
isfies that

|||HU − HESN|||∞ < 󰂃. (10 )

Perspectives

1 What about unbounded inputs?
2 We know a lot about continuity. What about

differentiability?
3 Performance bounds. Maurey-Barron-Jones Theorems

and the curse of dimensionality.
4 Capacity estimates.
5 We solved the approximation error problem. What about

the estimation error problem?
6 Relation to time series analysis.
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