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Abstract—The study of parent-child social interactions has
proven to be valuable in enhancing understanding of early child
development and identifying avenues for intervention. Although
rarely studied, analyses of the body pose patterns of parent-child
dyads during naturalistic interactions (e.g. in videos) can yield
valuable insights into their social dynamics and level of engage-
ment. Resulting metrics such as interpersonal pose synchrony
may inform our understanding of developing cognition and its
disorders. However, existing methods for pose extraction and
tracking lack user-friendly pipelines or fail to cater specifically
to mother-child interactions, resulting in reduced effectiveness
and accuracy of data extraction. This paper aims to address
these limitations, by proposing an integrated methodology that
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offers a stable and reliable system for extracting and track-
ing body pose, specifically tailored for mother-child interaction
videos. The proposed framework combines pose estimation and
object detection techniques to extract skeletal representations of
participants and track their identities throughout the video. This
integration enables accurate assignment of individual identities
to the corresponding skeletal data. To facilitate the adoption
of this pipeline for automatic batch processing of videos, we
provide the complete framework and detailed instructions in a
publicly available GitHub repository. Researchers can leverage
this resource to streamline their video analysis processes and
extract valuable insights regarding parent-child interaction from
their video data.
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pose estimation, pose tracking.



I. INTRODUCTION

The significant role of parent-child interactions (PCIs) in
children’s early developmental processes has been widely rec-
ognized [1]-[3]. Specifically, mother-child interactions (MClIs)
have been shown to have a strong influence on the devel-
opment of social and intellectual abilities in children [2].
Parent-child interaction is a core component in the context
of a behavioral parent training program known as parent-
child interaction therapy [4], [S]. Within PCIs, the examination
of synchrony between parents and children contributes to
understanding of cognitive development and its disorders [6].
Moreover, PCIs provide insights into the study of autism in
children [7]. Through MClIs with instrumented toys [8], infant
cognitive flexibility can also be assessed.

Monitoring parent-child daily interactions at home can
provide valuable insights into children’s development and help
identify potential developmental abnormalities early on, en-
abling timely interventions. However, the number of available
PCI datasets is limited, and most datasets involving children’s
interactive behaviors include activities that are unnatural or
differ from typical home interactions [9], [10]. To effec-
tively apply research techniques to large-scale environments,
including home settings, it is crucial to work with datasets
that capture naturalistic behaviors of children during their
interactions with their mothers. Moreover, while studies on
the verbal aspects of PCI are more prevalent [11], [12],
multimodal datasets are able to capture richer patterns of PCI.
Specifically, the dataset should include video, audio, and other
modalities for a comprehensive analysis of these interactions.

In order to understand the context and evaluate various
facets of the parent-child interactions, direct manual annota-
tion of behaviors and events occurring in PCI videos is gen-
erally conducted [13]. However, direct annotation by human
coding is typically labor-intensive and time-consuming, partic-
ularly when dealing with a large number of videos that need
to be coded. Furthermore, it is known for its subjective nature,
where different coders may provide varying assessments for
the same behavior. Hence, automating the coding process
would be extremely helpful for monitoring children’s develop-
ment through recorded videos, especially at home. Quantifying
movements in videos serves as an indirect approach to aid
video coding, complimenting direct observations of interacting
individuals in videos, helping to reduce the time and effort
especially when coding a substantial volume of videos. Motion
energy analysis (MEA), also known as frame-differencing
method, is a simple yet common method used in psychology
for quantification of movements [14]. However, the method
is sensitive to noise like changing lighting conditions, and
it normally requires the interacting people’s positions to be
fixed during the interactions, which is not usually possible
for parent-child interactions where the movements are mostly
unstructured.

Pose estimation has been recently used as an alternative
to MEA [15]. The method can detect the coordinates of the
joints (or keypoints) of human body and create a skeleton. This

method is believed to be more robust to noise. When it comes
to synchrony analysis, it is also very useful for detecting which
part of body is important for generating movement synchrony.
Using pose estimation, however, requires correctly identifying
and tracking the detected skeletons over the span of video
frames to gain meaningful insights into the movements and in-
teractions of the people over time. However, the unstructured
natures of these interactions, including persistent occlusions
and frequent exits or entrances, pose challenges for general
pose tracking algorithms which often generate numerous IDs
for each individual or exhibit frequent ID switching within
short periods. To address this, we aim to develop a specialized
detection model tailored for mother-child interaction scenarios.

Understanding the importance of research in parent-child
interactions, especially those that are naturalistic, and the
substantial potential benefits of a unified framework for pose
estimation and tracking in videos capturing mother-child inter-
actions, this paper makes the following notable contributions:

- The collection of a parent-child interaction dataset con-
taining videos of naturalistic interactions between moth-
ers and their children. The interactions resemble those
typically performed by dyads at home, aiming to assess
the daily interactive behaviors of children.

- The development of an integrated framework designed to
automate the analysis of mother-child interaction videos,
incorporating both pose estimation and head identifi-
cation for the establishment of a robust and reliable
pose tracking system. The framework is equipped with
detailed instructions that aim to facilitate psychologists,
social scientists and researchers without much technical
expertise.

- The development of a head detector capable of discerning
between the mother and child’s heads. Our experimental
findings suggest that fine-tuning this detector using a
small selection of video frames yields promising results.
This serves as a guideline for others who may wish to
fine-tune the model with their own data.

II. RELATED STUDIES
A. Parent-child interaction

Research on children’s interactive behaviors, especially
those with autism, has been extensively studied over the
years [10], [16]. This includes robot-assisted therapy, where
children’s interactions with robots are considered [10]. Other
child datasets includes ChildPlay [17], which focuses on gaze
behaviors, and Emoreact [18], which focuses on emotional
responses. Rehg et al. have discussed children’s social and
communicative behaviors during interactions, introducing a
dataset containing interactions between children aged 1-2
years old and an adult [9].

The number of datasets targeting parent-child social interac-
tion has been limited compared to other types of human-human
interactions. A recent study by Doyran et al. [19] focused
on parent-infant interactions, specifically detecting physical
contact between the two. Additionally, a new multimodal



dataset for dyadic parent-child interactions, named DAMI-
P2C, and its preliminary analysis have been introduced [20],
[21]. However, it’s worth noting that the study primarily
focuses on story-reading activities, which differs from our
focus on daily interactive actions such as playing together with
or without toys.

B. Multi-person pose estimation and tracking

Since the late 2010s and particularly in recent years,
there has been the emergence of different techniques for
estimating poses in scenes with multiple individuals. Many
studies in the field of multi-person pose estimation leverage
the advancements in CNN-like structures to construct their
models. Some notable models for multi-person pose estimation
include DeeperCut [22], SimpleBaseline [23], OpenPose [24],
AlphaPose [25], MMPose [26]. The models are commonly
grouped into 2 different approaches: top-down and bottom-
up (or part-based). The former approach involves detecting
every person in the scene and subsequently performing pose
estimation for each individual. Representative models of this
method include those discussed in [27], [23] and AlphaPose
[25]. Conversely, the latter approach firstly detects body parts
and then links them together to obtain a complete skeleton.
Examples of this bottom-up approach are DeeperCut [22] and
OpenPose [24]. The bottom-up approach is generally believed
to be faster compared to the top-down method, particularly in
scenarios involving numerous individuals within the scene.

Pose identification/tracking is another important component
within video analysis. However, numerous pose estimation
models, such as in [22], [24], solely provide the coordinates of
skeletons without associating identities, presenting challenges
in determining ownership of each skeleton across frames. In
such cases, employing a tracking algorithm becomes necessary
to aid in the identification process. Studies on general object
tracking like Deep SORT [28] could provide a viable solution,
where the Kalman filter is employed to forecast the detected
object movements. Another noteworthy attempt in the domain
of pose tracking is Pose Flow [29]. This approach adopts a
top-down strategy, where pose estimation is conducted first,
followed by the construction of a pose flow builder which
facilitates the association of poses across frames. Moreover,
in addition to independent tracking methodologies, some pose
estimation models also attempt to incorporate pose tracking
into their algorithms [23], [25].

C. Object detection and face detection

Object detection is a widely-used technology in the field
of computer vision (CV), with various object detectors having
been developed over the years. The detection methods fall into
two primary categories: one-stage and two-stage approaches.
The one-stage approach prioritizes the algorithm’s speed, aim-
ing to enable models to work efficiently in real-time situations.
Examples of this approach are YOLO [30] and SSD [31]. In
contrast, the two-stage approach, such as R-CNN [32], Faster
R-CNN [33], Mask R-CNN [34], emphasizes detection accu-
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Fig. 1. Experimental setup and some materials used for parent-child
interaction task. The upper row: a) experiment room with arranged floor mat
and cameras (as seen from a third camera which hence does not appear in
this image), b) diagram of a typical experiment set-up. The lower row (c, d,
e): Some toys used in the experiment.

racy. Among these techniques, YOLO has garnered significant
interest and is extensively applied across various domains.

Face detection is commonly viewed as a particular case of
object detection, enabling the identification and differentia-
tion of individuals within each video frame. Numerous face
detection techniques have emerged over several decades of
research. These include methods based on active shape model
[35], snakes [36], deformable templates [37], edge [38], local
binary pattern [39], Gabor features [40], and neural networks
[41]. However, when the interactions are unstructured, these
face detectors [35]-[41] could fall short due to various factors.
First, there exists a large degree of face occlusion during nat-
uralistic mother-child interaction. The subjects often present
their face with a side or back view for a considerable amount
of time. The non-frontal issue is partly due to the spontaneous
experiment setting which does not restrict the subject from
head or body movement. A second potential issue pertains to
wearable devices or clothing (e.g. EEG caps, glasses, facial
masks, face coverings) which may occlude or alter some key
face features, resulting in false negatives.

III. THE SINGAPORE PCI DATASET

The broad goal of the PCI experiments is to examine parent-
child interactions in a naturalistic and cross-culturally appro-
priate manner while also supporting later data harmonization
and validation. By achieving this, the methods employed for
the dataset can be applied to natural settings (e.g., home-
based).

A. Experiment set-up

Data collection was conducted at Nanyang Technological
University in Singapore. The participants (each dyad consist-
ing of a mother and a child) were invited to a designated
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Fig. 2. Some example video frames, sampled in segments without toys
(left images) and with toys (right images).(Images used with specific
parental consent.)

experiment room. The room was equipped with experimental
materials as shown in Figure 1, including:

- Toys: including picture books, play phone, a stacking ring
(rock-a-stack), and a wooden toy (shape sorter pull along
toy),

- Camera (x3): ideally, one facing the mother, one facing
the child, and one for side view or top-down view,

- Soft mat: to protect the mother and child during interac-
tion, and encourage more movement,

- Stopwatch: to monitor the time of segments and the entire
session, and

- Session sheet: covering basic information of the PCI
session.

The parent was instructed to play with her child as they
would at home for about 10 minutes. The toys were introduced
after 5 minutes of playtime.

Each PCI session consists of three segments, one of which
is optional:

- Segment 1 (without toys): Parent plays and talks with

their child as they would at home.

- Segment 2 (with toys): Parent and their child play to-

gether with the toys.

- Segment 3 (toy passing): Parent requests a toy from their

child (optional).

Typically, three cameras recorded the mother-child interac-
tions from different angles, resulting in three videos for each
experiment. It is important to note that these videos capture
the same interactions but from different viewpoints. The videos
were then synchronized so that all videos of the same dyad
start and end at the same time. Figure 2 shows example footage
from two participant dyads for reference.

B. Dataset properties

a) Technical information

The dataset consists of multiple modalities, including im-
ages, videos, audio, and physiological signals such as EEG
and ECG (not analyzed here).
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Fig. 3. Age distribution of the cohort, broken down by sex

There were 40 participant dyads. Most participants have
three synchronized videos capturing the same interactions
from different angles. One participant, on the other hand, has
four videos. Due to technical issues, three participants only
have two videos each. In total, there are 118 parent-child
interaction (PCI) videos. The frame rate is typically 25 FPS, 30
FPS, or 100 FPS. Each video was approximately 10 minutes
long.

b) Video contents

The videos contained mostly unstructured interactions be-
tween the mother and her child, as they normally occur at
home. Throughout the videos, various actions were observed
from the mothers such as cradling, holding, hugging, carrying,
leading, or following their child. Mothers also elicited their
child’s attention through vocal cues (singing), gesture or
movement.. The children could be seen moving in and out of
the scene, moving towards or away from the cameras, sitting,
standing, crawling, rolling over, walking, and lying down on
their belly or back.

The analysis of these videos presents several practical
challenges, including people entering and leaving the scene,
frequent occlusions, partial body visibility or occlusion, ex-
perimenters (besides the mother and child) entering the scene,
and instances where mothers and children wear EEG caps
throughout the interaction. Additionally, it is common for
participants to face away from or sideways to the camera,
resulting in only the back or side of their heads being visible.
These challenging characteristics of the dataset render existing
general tracking methods and standard face detection models
ineffective. This underscores the necessity of our framework
as a practical tool for researchers in similar fields.
¢) Demographics

The age range of the participants, along with their respective
numbers, are shown in Figure 3. The mean age of the included
infants was 15.55 months (SD = 4.75 months). The gender
distribution within each age group is also provided in Figure
3.

IV. METHODOLOGY

The overall diagram of our proposed framework is demon-
strated in Figure 4, which consists of two stages: the per-
frame analysis and multi-frame processing. In the first stage
of per-frame analysis, one frame of a PCI video is considered
at a time, aiming to output the skeletons (if any) with their
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Fig. 4. The overall structure of our proposed framework. (Images used with specific parental consent.)

corresponding labels for the frame. To do that, each frame
is independently fed through a pose estimation model and a
head detection & classification model. The outputs are then
combined in an integration mechanism to assign specific labels
(mother or child) to the detected skeletons. After the per-
frame analysis is completed for a batch of frames or the entire
video, the second stage, multi-frame processing, begins. This
stage aims to create smooth and clean time series data that
is useful for further research in parent-child interaction. To
that end, the keypoints of the same person’s skeleton are first
stacked together over consecutive frames of the video to form
multiple time series, each corresponding to a keypoint. The
filters are then applied to the time series to remove noise and
smooth them out. For training (fine-tuning) and evaluating the
models in our proposed framework, the Singapore PCI dataset
is employed.

A. Pose estimation

We employ OpenPose [24], a well-known multi-person pose
estimation model, to extract poses from our video data. Open-
Pose stands out as one of the prevalent tools for human 2D
pose extraction (readers may refer to Table I which provides
statistics on the popularity of various GitHub repositories for
human pose estimation). Its advantages include real-time per-
formance, high quality results and a user-friendly application
programming interface (API). Most commonly-used feature of
OpenPose is the estimation of the keypoints (or joints) in the
main human body. Besides body keypoints, OpenPose also

TABLE 1. Some GitHub repositories for human pose estima-tion (as of
August 2025, number of stars and forks are rounded to 0.1k).

Methods First Commit | Stars | Forks
OpenPose! [24] Apr 24,2017 | 32.9k 8.0k
HRNet? [27] Feb 25, 2019 4.4k 0.9k
AlphaPose? [25] Dec 22, 2019 8.4k 2.0k
MMPose* [26] Jul 10, 2020 6.8k 1.4k
SimpleBaseline® [23] Aug 1, 2018 3.0k 0.6k

!https://github.com/CMU-Perceptual-Computing-Lab/openpose
2 https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
3 https://github.com/MVIG-SITU/AlphaPose
4 https://github.com/open-mmlab/mmpose

3 https://github.com/microsoft/human-pose-estimation.pytorch.

offers models to extract additional detailed keypoints of the
foot, hand, and face. Notably, the model has also been added
to OpenCV, a highly popular open-source computer vision and
machine learning software library.

OpenPose offers several approaches to use its models. Users
can rebuild the models or use the pretrained ones. Different
configurations of the body skeleton are also provided, such as
16 points and 25 points.

B. Head detection & classification

The goal of head detection is to obtain the bounding boxes
for the dyadic subjects for each frame. Employing a face
detector is the natural way to this end. Indeed, face detection
is the cornerstone for any face analysis systems. However, as



discussed earlier, the regular face detectors would fall short
due to the unstructured nature of parent-child interactions.

We resort to a deep learning-based object detection method
for head detection. Specifically, the YOLO (You Only Look
Once) algorithm [30] is used for detection of the head of the
dyads in each video frame. YOLO is one of the most common
tools in computer vision for object detection. It has gained
widespread acclaim for its exceptional speed and accuracy.
Unlike traditional object detection methods, which involve
multiple stages and complex post-processing, YOLO simplifies
the process by treating object detection as a unified task. It
essentially divides an image into a grid and simultaneously
predicts bounding boxes, class probabilities, and confidence
scores for each grid cell. This unique approach enables YOLO
to detect multiple objects in a single pass through the neural
network, resulting in real-time performance even on resource-
constrained devices. We employ YOLOv7 [42] since it is the
latest version as of the writing of this paper.

To proceed, the pretrained YOLOv7 model' is downloaded
and finetuned using samples from the video recordings. Specif-
ically, for each dyad, approximately 100 frames are obtained
by sampling across all their videos at a fixed time interval
based on the total duration. Each frame is then manually
annotated with bounding boxes around the heads of the child
and the mother. Finally, YOLOvV7 is finetuned using the
training script provided in the repository. Details of these steps
are provided below.

1) Head annotation: This annotation task is performed for
all 118 videos of 40 participants. There are approximately 100
images sampled from each video. The annotation task includes
manual drawing the head bounding boxes for the mother and
the child for each image, and assign to the bounding boxes
either one of two labels: “mother” or “child”. To speed up
the labeling process, we employ semi-automatic annotation.
Initially, a model is trained using a small set of hand-labeled
images. Subsequently, this trained model is used to make
predictions on the unlabeled images. The labels generated for
images that has not been manually labeled are reviewed by
annotators to ensure accuracy.

2) Model training using cross-validation: After obtaining
labeled data for all the sampled images, the 40 participants are
randomly divided into 5 groups labeled as A, B, C, D, and
E, with each group comprising 8 participants. These 5 groups
then undergo a k-fold cross-validation process (k=5), where
the test and validation sets are systematically rotated.

While the participants within each group and the group
composition within each iteration remain consistent, there is
variability in the number of images per video that are used
for fine-tuning YOLOvV7. From approximately 100 labeled
images for each video, we use 1/5, 1/4, 1/3, 1/2, 1/1 of
those images (which corresponds to approximately 20, 25,
33, 50, 100 images per video, respectively) to fine-tune our
YOLOvV7 head detector. This approach allows us to analyze
the performance trend as we increase the number of data

Ihttps:/github.com/WongKinYiu/yolov7

samples for training and serves as an indicator for determining
the number of frames that need to be labeled to achieve
satisfactory performance.

3) Head bounding box generation: After training, the best
model obtained in each iteration, based on evaluation on the
validation set, is used to generate head bounding boxes for
the videos. The data from head bounding boxes is stored in a
CSV file per video, with each line corresponding to a frame.
Each line of the CSV file only contains at most 1 bounding
box for the mother and at most 1 bounding box for the child.
These bounding boxes are those with the highest likelihood of
being the mother and the child, respectively.

C. Integration of the pose estimation and head detection for
tracking purposes

The head keypoints (including the eyes, ears and nose)
obtained from pose estimation (OpenPose) and the head
bounding boxes resulted from head detection (YOLO) are used
as the inputs of the integration step, as shown in Figure 5.
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Fig. 5. Integration of the outputs of OpenPose and YOLO, to assign the
skeleton to a label.

To associate the OpenPose-detected head keypoints with
YOLO-detected head bounding boxes, we create bounding
boxes around the OpenPose head keypoints, as illustrated in
Figure 5a. Then, we compute the coordinates of the centers
for both the OpenPose-detected and YOLO-detected bounding
boxes (called Pose’s head and YOLO’s head respectively), as
shown in Figure 5b. Generally in a frame, there are multiple
Pose’s heads and YOLO’s heads. To match their centers, we
use the Euclidean distance d (measured in pixels) between
them (as shown in Figure 5c) and utilize the linear sum
assignment problem, as depicted in Table II.

The linear sum assignment problem seeks to match the
Pose’s heads to the corresponding YOLO’s heads by mini-
mizing the total distance (sum of dijj) between their centers.
This matching allows the skeletal data to be accurately linked
to the corresponding individual identities.



TABLE II. OpenPose—-YOLO heads assignment task. Suppose that there are
3 head bounding boxes (A, B, C) detected by YOLO and 2 skeletons (1,
2) with available head keypoints detected by OpenPose in a frame.

Pose’s Head / YOLO’s Head A B C
I dia | diBp | dic
2 doa | dap | dac

D. Filtering for movement quantification

After the integration of the OpenPose and YOLO for each
video frame, the keypoints for the mother and the keypoints
for the child are stored independently from one another.
Collecting the data accross the frames of the video generate
the time series data for each keypoint of each person (mother
and child). In the following, we present some additional
techniques aimed at reducing noise within the acquired time
series data. Although these methods are implemented in our
codebase, they are not applied in the analyses reported in
Section V and therefore do not influence the presented results.

1) Raw filtering: For the elimination of extreme values in
each time series, such as false detections, we implement a
moving average (MA) technique. The MA serves as a simple
low-pass filter, and is normally used to smooth time series
data. In our framework, the raw filter is exclusively employed
to eliminate abnormal data points. By utilizing the moving
average, outliers that significantly deviate from the current MA
value by a specified threshold are effectively removed.

2) Fine filtering: In our effort to further reduce noise in the
time series, the data obtained from the raw filter is subjected
to an additional filtering process aimed at fine-tuning and
smoothing the series. For this purpose, we employ a digital
filter known as the SavGol (Savitzky—Golay) filter [43].

Using the fine filter yields time series data that is notably
less noisy and smoother. This refined data is then better suited
for a variety of research purposes, including analyses related
to synchrony and other research applications.

V. TRACKING RESULTS

This section presents the results of applying our proposed
framework to the Singapore PCI dataset. It includes details on
the evaluation metrics used and the performance of the models
employed.

The source code is open and available on GitHub at https:
//github.com/thiethnguyen/M CI-pose-tracking.

A. Evaluation metrics

In our research, we employed OpenPose to generate the
pose and then integrated it with our fine-tuned head detection
model to determine whether the generated pose corresponds to
the mother, the child, or neither. Consequently, the evaluation
metrics should access how effectively the model classifies
the pose into the 3 classes (mother, child, other). Therefore,
we employed metrics commonly associated with classification
tasks, such as accuracy and Fl-score, to evaluate the perfor-
mance of our proposed framework.

B. Performance of the proposed framework

As mentioned in Section IV-B2, we trained five different
models to analyze the performance trend as we increase the
number of data samples. The five models are named according
to the ratio of labeled images in each video used for fine-
tuning: 1/1, 1/2, 1/3, 1/4, and 1/5. For each model, we collected
results from each data fold, and subsequently computed the
averages to obtain the final figures for training, validation, and
test sets.

Table III summarizes the average accuracies for different
scenarios involving the utilization of varying data ratios for
fine-tuning YOLOV7, while figures 6 and 7 present the F1-
scores specifically for the mother and the child, respectively.

TABLE III. Average results for different models fine-tuned by different
ratios of data.

. B Accuracy
Ratio of data Training Validation Test
1/5 0.9 £0.034 0.867+0.037 | 0.867+0.062
1/4 0.936+0.02 | 0.908+0.027 | 0.903+0.034
1/3 0.937+0.012 | 0.915%0.022 | 0.913+0.025
12 0.953+0.012 | 0.936%0.021 | 0.929+0.016
1/1 0.965+0.005 | 0.941+0.014 | 0.944%0.015
* The ratio over the number of images that have been labeled.
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Fig. 6. Average results for different models fine-tuned by different
ratios of data - Mother.
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Fig. 7. Average results for different models fine-tuned by different
ratios of data - Child.

Figures 6 and 7 show the trend of the mean Fl-score as
different portions of the labeled images are used for fine-
tuning YOLOV7. Notably, the results show a general increase



in the averaged F1-score as the number of labeled images used
for head detection model fine-tuning increases—a predictable
trend. Nevertheless, the scores remain high across all data
ratios. With only one-fifth of the labeled data (20 images per
video), the Fl-score on the test sets reaches approximately
0.85, while using the full dataset (100 images per video) raises
it by only about 0.09, to around 0.94.

VI. USING THE PROPOSED FRAMEWORK

In this section, we apply the proposed framework to the
task of calculating the total movement of the child in each
video. This serves as a tutorial for anyone who wants to use
our framework for their purposes. The application also demon-
strates that the proposed framework effectively distinguishes
between the skeletons of the mother, child, and others, and
generates time series data for the keypoints.

A. Defining the task

Using the time series of a person’s keypoint that has been
filtered to remove noise, (i.e., an output of our proposed
framework) the total movement of that keypoint throughout
the video is calculated based on the summation of all the
Euclidean distances the keypoint moves from a previous
frame (¢ — 1) to the next frame (?).

N
™ = Z V(e =2 1)? + (g — yr-1)? (1)
t=2

where TM stands for total movement, ¢ denotes frame index,
N denotes the total number of frames of the video. As the
lengths of the videos can be different, a normalized total
movement (NTM) is introduced as

™
NTM = — X N, 2
N 0 2)
where the factor IVj is the standardized number of frames of
a video.

B. Adoption of the framework

The fine-tuned YOLO model was used to classify the
extracted skeletons in each frame of the PCI video. After
that, the filtering techniques mentioned in Section IV-D were
applied to preprocess the time series for each keypoint.

With our current task of movement calculation, we obtained
time series data of children’s neck movements from all the
videos. Figure 9 presents selected time series data from two
children in different videos (with corresponding snapshots
shown in Figure 8), following completion of the preprocessing
process.

The total movements were then calculated using equations
1 and 2 with Ny = 15000 being used, as the standard video is
defined as 10 minutes in length and at a frame rate of 25 FPS.

As each participant has several videos, we picked the
highest value of NTM among those videos as the number for
that participant. We then calculated the mean and SD for the
participants in the same age group. The results are shown in
Table IV.

(b) Interaction of a 12 month-old
child (right)

(a) Interaction of a 6 month-old child
(left)

Fig. 8. Interaction of a 6 month-old child (left) and a 12 month-old child
(right). (Images used with specific parental consent.)
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Fig. 9. Neck location of a 6 month-old child (left) and a 12 month-old
child (right).
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C. Discussion on the result of the task

As can be seen from Table IV, there is general increasing
trend in the movement of the children when their ages are
older. A distinct difference between the child of age 6 months
with other children of older age groups can also be seen,
where the normalized total movement of the 6 month-old
child is much less than averages of other age groups. This is
reasonable as the posture of the 6-month old infant is generally
supine throughout the experiment, as compared with other
older children who are able to stand, sit, run, walk during
the experiment. It is also worth noting that even though the
child is generally supine, the interactions with the mother have
contributed to the value of the total movement, also not to
mention the error of the OpenPose or the incapability of the
filters to completely remove the noise of the time series data.

Therefore, the results in Table IV, while not perfectly
capturing the total neck movement of the child, can still
indicate the efficacy of our proposed framework. The steps
outlined in this Section VI also provide a solid starting point
for users interested in applying this method.

VII. FURTHER DISCUSSIONS AND LIMITATIONS

When using general tracking algorithms, it is common to
obtain a substantial number of tracking IDs for each individual,
particularly in scenarios where human subjects exhibit exten-
sive movement, interaction, and frequent entries and exits from
the scene. An additional challenge arises from the fact that
dyad members may share the same set of IDs. This can pose
significant difficulties for coders and researchers, as it requires



TABLE IV. Average normalized total movement (NTM) of the neck for
different infant age groups.

Age group (months)(D Average NTM of the neck
6 14.50+0
12 29.06 +8.56
18 31.24+10.48
24 31.82+6.39

() The infants are categorized to suitable age group based on the closest to
the actual age.

careful observation of the output videos to accurately attribute
the correct ID to the right individual at various points in
time. This discussion highlights the complexities of tracking in
scenarios with dynamic human interactions, emphasizing the
need for more specific tracking methods to improve precision
and reduce the burden on researchers.

The results presented in Section V-B indicate that it may
not be necessary to use a large amount of sampled data for
fine-tuning the head detection model to attain satisfactory
results. In practical scenarios where time constraints exist, the
option of reducing the number of sampled images requiring
labeling becomes a viable consideration. This approach can
help streamline the data labeling process without significantly
compromising the quality of the head detection model.

Our work presents a straightforward unified framework for
dyadic pose extraction, suitable for researchers in psychology
and child development studies who wish to use machine
learning methods to analyze pose patterns in PCI videos. It
also serves as a tutorial for non-experts outside the machine
learning community, guiding them in selecting, implementing,
and integrating various ML tools suited to their research
needs. Our contribution primarily benefits a specific group
of researchers in these fields, rather than making significant
technical contributions to the broader machine learning or
video analysis communities. It is also important to note that
the dataset used in our study is modest in size and is still
under development.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced an integrated methodology
that provides a robust and reliable system for extracting and
tracking body poses, with a specific focus on mother-child
interaction videos. Through the integration of OpenPose as
a pose estimator and YOLOV7 as a head detector, we have
been able to assign identifications to the skeletons detected.
Our experimental findings have shown the efficacy of this
framework, even when fine-tuning the head detection model
with a relatively small subset of video frames. This suggests
that the proposed methodology offers a practical and efficient
solution for researchers working with mother-child interaction
videos. The code and models shared within this research serve
as a valuable contribution to the field, offering a useful tool
that can be applied to various studies in the domain of child
development and health.

Our current and future directions include making the entire

framework even easier for non-expert users, increasing the
accuracy of the models for different cross-cultural interaction
videos, and investigating the postural synchrony and coordi-
nation between dyad members.
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