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Abstract—The  study  of  parent-child  social  interactions  has 
proven to be valuable in enhancing understanding of early child 
development and identifying avenues for intervention. Although 

rarely studied, analyses of the body pose patterns of parent-child 
dyads during naturalistic interactions (e.g. in videos) can yield 
valuable insights into their social dynamics and level of engage- 

ment. Resulting metrics such as interpersonal pose synchrony 
may inform our understanding of developing cognition and its 
disorders.  However,  existing  methods  for  pose  extraction  and 

tracking lack user-friendly pipelines or fail to cater specifically 
to mother-child interactions, resulting in reduced effectiveness 
and  accuracy  of  data  extraction. This  paper  aims  to  address 

these limitations, by proposing an integrated methodology that 
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offers a stable and reliable  system  for  extracting  and  track- 
ing body pose, specifically tailored for mother-child interaction 
videos. The proposed framework combines pose estimation and 

object detection techniques to extract skeletal representations of 
participants and track their identities throughout the video. This 
integration enables accurate assignment of individual identities 

to the corresponding  skeletal  data.  To  facilitate  the  adoption 
of this pipeline for automatic batch processing of videos, we 
provide the complete framework and detailed instructions in a 

publicly available GitHub repository. Researchers can leverage 
this resource to streamline their video analysis processes and 
extract valuable insights regarding parent-child interaction from 

their video data. 

Keywords—parent-child   interaction,   cognitive   development, 
pose estimation, pose tracking. 
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I. INTRODUCTION 

The significant role of parent-child interactions (PCIs) in 

children’s early developmental processes has been widely rec- 

ognized [1]–[3]. Specifically, mother-child interactions (MCIs) 

have been shown to have a strong influence on the devel- 

opment of social and intellectual abilities in children [2]. 

Parent-child interaction is a core component in the context 

of a behavioral parent training program known as  parent- 

child interaction therapy [4], [5]. Within PCIs, the examination 

of synchrony between parents and children contributes to 

understanding of cognitive development and its disorders [6]. 

Moreover, PCIs provide insights into the study of autism in 

children [7]. Through MCIs with instrumented toys [8], infant 

cognitive flexibility can also be assessed. 

Monitoring  parent-child  daily  interactions  at  home  can 

provide valuable insights into children’s development and help 

identify potential developmental abnormalities early on, en- 

abling timely interventions. However, the number of available 

PCI datasets is limited, and most datasets involving children’s 

interactive behaviors include activities that are unnatural or 

differ  from  typical  home  interactions  [9],  [10].  To  effec- 

tively apply research techniques to large-scale environments, 

including home settings, it is crucial to work with datasets 

that  capture  naturalistic  behaviors  of  children  during  their 

interactions with their mothers. Moreover, while studies on 

the  verbal  aspects  of  PCI  are  more  prevalent  [11],  [12], 

multimodal datasets are able to capture richer patterns of PCI. 

Specifically, the dataset should include video, audio, and other 

modalities for a comprehensive analysis of these interactions. 

In  order  to  understand  the  context  and  evaluate  various 

facets of the parent-child interactions, direct manual annota- 

tion of behaviors and events occurring in PCI videos is gen- 

erally conducted [13]. However, direct annotation by human 

coding is typically labor-intensive and time-consuming, partic- 

ularly when dealing with a large number of videos that need 

to be coded. Furthermore, it is known for its subjective nature, 

where different coders may provide varying assessments for 

the  same  behavior.  Hence,  automating  the  coding  process 

would be extremely helpful for monitoring children’s develop- 

ment through recorded videos, especially at home. Quantifying 

movements in videos serves as an indirect approach to aid 

video coding, complimenting direct observations of interacting 

individuals in videos, helping to reduce the time and effort 

especially when coding a substantial volume of videos. Motion 

energy  analysis  (MEA),  also  known  as  frame-differencing 

method, is a simple yet common method used in psychology 

for quantification of movements [14]. However, the method 

is sensitive to noise like changing lighting conditions, and 

it normally requires the interacting people’s positions to be 

fixed during the interactions, which is not usually possible 

for parent-child interactions where the movements are mostly 

unstructured. 

Pose estimation has been recently used as an alternative 

to MEA [15]. The method can detect the coordinates of the 

joints (or keypoints) of human body and create a skeleton. This 

method is believed to be more robust to noise. When it comes 

to synchrony analysis, it is also very useful for detecting which 

part of body is important for generating movement synchrony. 

Using pose estimation, however, requires correctly identifying 

and tracking the detected skeletons over the span of video 

frames to gain meaningful insights into the movements and in- 

teractions of the people over time.  However, the unstructured 

natures of these interactions, including persistent occlusions 

and frequent exits or entrances, pose challenges for general 

pose tracking algorithms which often generate numerous IDs 

for each individual or exhibit frequent ID switching within 

short periods. To address this, we aim to develop a specialized 

detection model tailored for mother-child interaction scenarios. 

Understanding the importance of research in parent-child 

interactions,  especially  those  that  are  naturalistic,  and  the 

substantial potential benefits of a unified framework for pose 

estimation and tracking in videos capturing mother-child inter- 

actions, this paper makes the following notable contributions: 

- The collection of a parent-child interaction dataset con- 

taining videos of naturalistic interactions between moth- 

ers and their children. The interactions resemble those 

typically performed by dyads at home, aiming to assess 

the daily interactive behaviors of children. 

- The development of an integrated framework designed to 

automate the analysis of mother-child interaction videos, 

incorporating both pose estimation and head identifi- 

cation for the establishment of a robust  and  reliable 

pose tracking system. The framework is equipped with 

detailed instructions that aim to facilitate psychologists, 

social scientists and researchers without much technical 

expertise. 

- The development of a head detector capable of discerning 

between the mother and child’s heads. Our experimental 

findings suggest  that fine-tuning  this detector  using  a 

small selection of video frames yields promising results. 

This serves as a guideline for others who may wish to 

fine-tune the model with their own data. 

II. RELATED STUDIES

A. Parent-child interaction 

Research on children’s interactive behaviors, especially 

those with autism, has been extensively studied over  the 

years [10], [16]. This includes robot-assisted therapy, where 

children’s interactions with robots are considered [10]. Other 

child datasets includes ChildPlay [17], which focuses on gaze 

behaviors, and Emoreact [18], which focuses on emotional 

responses. Rehg et al. have discussed children’s social and 

communicative behaviors during interactions, introducing a 

dataset containing interactions between children aged 1-2 

years old and an adult [9]. 

The number of datasets targeting parent-child social interac- 

tion has been limited compared to other types of human-human 

interactions. A recent study by Doyran et al. [19] focused 

on parent-infant interactions, specifically detecting physical 

contact  between  the  two.  Additionally,  a  new  multimodal 



dataset for  dyadic parent-child interactions,  named DAMI- 

P2C, and its preliminary analysis have been introduced [20], 

[21]. However, it’s worth noting that the study primarily 

focuses on story-reading activities, which differs from our 

focus on daily interactive actions such as playing together with 

or without toys. 

B. Multi-person pose estimation and tracking 

Since the late 2010s and particularly in recent  years, 

there has been the emergence of different techniques for 

estimating poses in scenes with multiple individuals. Many 

studies in the field of multi-person pose estimation leverage 

the advancements in CNN-like structures to construct their 

models. Some notable models for multi-person pose estimation 

include DeeperCut [22], SimpleBaseline [23], OpenPose [24], 

AlphaPose [25], MMPose [26]. The models are commonly 

grouped into 2 different approaches: top-down and bottom- 

up (or part-based). The former approach involves detecting 

every person in the scene and subsequently performing pose 

estimation for each individual. Representative models of this 

method include those discussed in [27], [23] and AlphaPose 

[25]. Conversely, the latter approach firstly detects body parts 

and then links them together to obtain a complete skeleton. 

Examples of this bottom-up approach are DeeperCut [22] and 

OpenPose [24]. The bottom-up approach is generally believed 

to be faster compared to the top-down method, particularly in 

scenarios involving numerous individuals within the scene. 

Pose identification/tracking is another important component 

within video analysis. However, numerous pose estimation 

models, such as in [22], [24], solely provide the coordinates of 

skeletons without associating identities, presenting challenges 

in determining ownership of each skeleton across frames. In 

such cases, employing a tracking algorithm becomes necessary 

to aid in the identification process. Studies on general object 

tracking like Deep SORT [28] could provide a viable solution, 

where the Kalman filter is employed to forecast the detected 

object movements. Another noteworthy attempt in the domain 

of pose tracking is Pose Flow [29]. This approach adopts a 

top-down strategy, where pose estimation is conducted first, 

followed by the construction of a pose flow builder which 

facilitates the association of poses across frames. Moreover, 

in addition to independent tracking methodologies, some pose 

estimation models also attempt to incorporate pose tracking 

into their algorithms [23], [25]. 

C. Object detection and face detection 

Object detection is a widely-used technology in the field 

of computer vision (CV), with various object detectors having 

been developed over the years. The detection methods fall into 

two primary categories: one-stage and two-stage approaches. 

The one-stage approach prioritizes the algorithm’s speed, aim- 

ing to enable models to work efficiently in real-time situations. 

Examples of this approach are YOLO [30] and SSD [31]. In 

contrast, the two-stage approach, such as R-CNN [32], Faster 

R-CNN [33], Mask R-CNN [34], emphasizes detection accu- 

Fig. 1. Experimental setup and some materials used for parent-child 

interaction task. The upper row: a) experiment room with arranged floor mat 

and cameras (as seen from a third camera which hence does not appear in 

this image), b) diagram of a typical experiment set-up. The lower row (c, d, 

e): Some toys used in the experiment. 

racy. Among these techniques, YOLO has garnered significant 

interest and is extensively applied across various domains. 

Face detection is commonly viewed as a particular case of 

object detection, enabling the identification and differentia- 

tion of individuals within each video frame. Numerous face 

detection techniques have emerged over several decades of 

research. These include methods based on active shape model 

[35], snakes [36], deformable templates [37], edge [38], local 

binary pattern [39], Gabor features [40], and neural networks 

[41]. However, when the interactions are unstructured, these 

face detectors [35]–[41] could fall short due to various factors. 

First, there exists a large degree of face occlusion during nat- 

uralistic mother-child interaction. The subjects often present 

their face with a side or back view for a considerable amount 

of time. The non-frontal issue is partly due to the spontaneous 

experiment setting which does not restrict the subject from 

head or body movement. A second potential issue pertains to 

wearable devices or clothing (e.g. EEG caps, glasses, facial 

masks, face coverings) which may occlude or alter some key 

face features, resulting in false negatives. 

III. THE SINGAPORE PCI DATASET

The broad goal of the PCI experiments is to examine parent- 

child interactions in a naturalistic and cross-culturally appro- 

priate manner while also supporting later data harmonization 

and validation. By achieving this, the methods employed for 

the dataset  can be  applied  to natural  settings  (e.g., home- 

based). 

A. Experiment set-up 

Data collection was conducted at Nanyang Technological 

University in Singapore. The participants (each dyad consist- 

ing of a mother and a child) were invited to a designated 
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Fig. 3. Age distribution of the cohort, broken down by sex 

Fig. 2. Some example video frames,  sampled  in  segments without  toys 

(left images) and with toys (right images).(Images used with specific 

parental consent.) 

experiment room. The room was equipped with experimental 

materials as shown in Figure 1, including: 

- Toys: including picture books, play phone, a stacking ring 

(rock-a-stack), and a wooden toy (shape sorter pull along 

toy), 

- Camera (x3): ideally, one facing the mother, one facing 

the child, and one for side view or top-down view, 

- Soft mat: to protect the mother and child during interac- 

tion, and encourage more movement, 

- Stopwatch: to monitor the time of segments and the entire 

session, and 

- Session sheet: covering basic information of the PCI 

session. 

The parent was instructed to play with her child as they 

would at home for about 10 minutes. The toys were introduced 

after 5 minutes of playtime. 

Each PCI session consists of three segments, one of which 

is optional: 

- Segment 1 (without toys): Parent plays and talks with 

their child as they would at home. 

- Segment 2 (with toys): Parent and their child play to- 

gether with the toys. 

- Segment 3 (toy passing): Parent requests a toy from their 

child (optional). 

Typically, three cameras recorded the mother-child interac- 

tions from different angles, resulting in three videos for each 

experiment. It is important to note that these videos capture 

the same interactions but from different viewpoints. The videos 

were then synchronized so that all videos of the same dyad 

start and end at the same time. Figure 2 shows example footage 

from two participant dyads for reference. 

B. Dataset properties 

a) Technical information

The dataset consists of multiple modalities, including im- 

ages, videos, audio, and physiological signals such as EEG 

and ECG (not analyzed here). 

There were 40 participant dyads. Most participants have 

three synchronized videos capturing the same interactions 

from different angles. One participant, on the other hand, has 

four videos. Due to technical issues, three participants only 

have two videos each. In total, there are 118 parent-child 

interaction (PCI) videos. The frame rate is typically 25 FPS, 30 

FPS, or 100 FPS. Each video was approximately 10 minutes 

long. 

b) Video contents

The videos contained mostly unstructured interactions be- 

tween the mother and her child, as they normally occur at 

home. Throughout the videos, various actions were observed 

from the mothers such as cradling, holding, hugging, carrying, 

leading, or following their child. Mothers also elicited their 

child’s attention through vocal cues (singing), gesture or 

movement.. The children could be seen moving in and out of 

the scene, moving towards or away from the cameras, sitting, 

standing, crawling, rolling over, walking, and lying down on 

their belly or back. 

The analysis of these videos presents several practical 

challenges, including people entering and leaving the scene, 

frequent occlusions, partial body visibility or occlusion, ex- 

perimenters (besides the mother and child) entering the scene, 

and instances where mothers and children wear EEG caps 

throughout the interaction. Additionally, it is common for 

participants to face away from or sideways to the camera, 

resulting in only the back or side of their heads being visible. 

These challenging characteristics of the dataset render existing 

general tracking methods and standard face detection models 

ineffective. This underscores the necessity of our framework 

as a practical tool for researchers in similar fields. 

c) Demographics

The age range of the participants, along with their respective

numbers, are shown in Figure 3. The mean age of the included 

infants was 15.55 months (SD = 4.75 months). The gender 

distribution within each age group is also provided in Figure 

3. 

IV. METHODOLOGY

The overall diagram of our proposed framework is demon- 

strated in Figure 4, which consists of two stages: the per- 

frame analysis and multi-frame processing. In the first stage 

of per-frame analysis, one frame of a PCI video is considered 

at a time, aiming to output the skeletons (if any) with their 
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corresponding labels for the frame. To do that, each frame 

is independently fed through a pose estimation model and a 

head detection & classification model. The outputs are then 

combined in an integration mechanism to assign specific labels 

(mother or child) to the detected skeletons. After the per- 

frame analysis is completed for a batch of frames or the entire 

video, the second stage, multi-frame processing, begins. This 

stage aims to create smooth and clean time series data that 

is useful for further research in parent-child interaction. To 

that end, the keypoints of the same person’s skeleton are first 

stacked together over consecutive frames of the video to form 

multiple time series, each corresponding to a keypoint. The 

filters are then applied to the time series to remove noise and 

smooth them out. For training (fine-tuning) and evaluating the 

models in our proposed framework, the Singapore PCI dataset 

is employed. 

A. Pose estimation 

We employ OpenPose [24], a well-known multi-person pose 

estimation model, to extract poses from our video data. Open- 

Pose stands out as one of the prevalent tools for human 2D 

pose extraction (readers may refer to Table I which provides 

statistics on the popularity of various GitHub repositories for 

human pose estimation). Its advantages include real-time per- 

formance, high quality results and a user-friendly application 

programming interface (API). Most commonly-used feature of 

OpenPose is the estimation of the keypoints (or joints) in the 

main human body. Besides body keypoints, OpenPose also 

TABLE I. Some GitHub repositories for human pose estima-tion (as of 

August 2025, number of stars and forks are rounded to 0.1k). 

Methods First Commit Stars Forks 

OpenPose1 [24] Apr 24, 2017 32.9k 8.0k 

HRNet2 [27] Feb 25, 2019 4.4k 0.9k 

AlphaPose3 [25] Dec 22, 2019 8.4k 2.0k 

MMPose4 [26] Jul 10, 2020 6.8k 1.4k 

SimpleBaseline5 [23] Aug 1, 2018 3.0k 0.6k 

1 https://github.com/CMU-Perceptual-Computing-Lab/openpose 
2 https://github.com/leoxiaobin/deep-high-resolution-net.pytorch 

3 https://github.com/MVIG-SJTU/AlphaPose 
4 https://github.com/open-mmlab/mmpose 

5 https://github.com/microsoft/human-pose-estimation.pytorch. 

offers models to extract additional detailed keypoints of the 

foot, hand, and face. Notably, the model has also been added 

to OpenCV, a highly popular open-source computer vision and 

machine learning software library. 

OpenPose offers several approaches to use its models. Users 

can rebuild the models or use the pretrained ones. Different 

configurations of the body skeleton are also provided, such as 

16 points and 25 points. 

B. Head detection & classification 

The goal of head detection is to obtain the bounding boxes 

for the dyadic subjects for each frame. Employing a face 

detector is the natural way to this end. Indeed, face detection 

is the cornerstone for any face analysis systems. However, as 
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discussed earlier, the regular face detectors would fall short 

due to the unstructured nature of parent-child interactions. 

We resort to a deep learning-based object detection method 

for head detection. Specifically, the YOLO (You Only Look 

Once) algorithm [30] is used for detection of the head of the 

dyads in each video frame. YOLO is one of the most common 

tools in computer vision for object detection. It has gained 

widespread acclaim for its exceptional speed and accuracy. 

Unlike traditional object detection methods, which involve 

multiple stages and complex post-processing, YOLO simplifies 

the process by treating object detection as a unified task. It 

essentially divides an image into a grid and simultaneously 

predicts bounding boxes, class probabilities, and confidence 

scores for each grid cell. This unique approach enables YOLO 

to detect multiple objects in a single pass through the neural 

network, resulting in real-time performance even on resource- 

constrained devices. We employ YOLOv7 [42] since it is the 

latest version as of the writing of this paper. 

To proceed, the pretrained YOLOv7 model1 is downloaded 

and finetuned using samples from the video recordings. Specif- 

ically, for each dyad, approximately 100 frames are obtained 

by sampling across all their videos at a fixed time interval 

based on the total duration. Each frame is then manually 

annotated with bounding boxes around the heads of the child 

and the mother. Finally, YOLOv7 is finetuned using the 

training script provided in the repository. Details of these steps 

are provided below. 

1) Head annotation: This annotation task is performed for

all 118 videos of 40 participants. There are approximately 100 

images sampled from each video. The annotation task includes 

manual drawing the head bounding boxes for the mother and 

the child for each image, and assign to the bounding boxes 

either one of two labels: ”mother” or ”child”. To speed up 

the labeling process, we employ semi-automatic annotation. 

Initially, a model is trained using a small set of hand-labeled 

images. Subsequently, this trained model is used to make 

predictions on the unlabeled images. The labels generated for 

images that has not been manually labeled are reviewed by 

annotators to ensure accuracy. 

2) Model training using cross-validation: After obtaining

labeled data for all the sampled images, the 40 participants are 

randomly divided into 5 groups labeled as A, B, C, D, and 

E, with each group comprising 8 participants. These 5 groups 

then undergo a k-fold cross-validation process (k=5), where 

the test and validation sets are systematically rotated. 

While the participants within each group and the group 

composition within each iteration remain consistent, there is 

variability in the number of images per video that are used 

for fine-tuning YOLOv7. From approximately 100 labeled 

images for each video, we use 1/5, 1/4,  1/3,  1/2,  1/1  of 

those images (which corresponds to approximately 20, 25, 

33, 50, 100 images per video, respectively) to fine-tune our 

YOLOv7 head detector. This approach allows us to analyze 

the  performance  trend  as  we  increase  the  number  of  data 

1https://github.com/WongKinYiu/yolov7 

samples for training and serves as an indicator for determining 

the number of frames that need to be labeled to achieve 

satisfactory performance. 

3) Head bounding box generation: After training, the best

model obtained in each iteration, based on evaluation on the 

validation set, is used to generate head bounding boxes for 

the videos. The data from head bounding boxes is stored in a 

CSV file per video, with each line corresponding to a frame. 

Each line of the CSV file only contains at most 1 bounding 

box for the mother and at most 1 bounding box for the child. 

These bounding boxes are those with the highest likelihood of 

being the mother and the child, respectively. 

C. Integration of the pose estimation and head detection for 

tracking purposes 

The head keypoints (including the eyes, ears and nose) 

obtained from pose estimation (OpenPose) and the head 

bounding boxes resulted from head detection (YOLO) are used 

as the inputs of the integration step, as shown in Figure 5. 

se’s Head 

� 

Fig. 5. Integration of the outputs of OpenPose and YOLO, to assign the 

skeleton to a label. 

To associate the OpenPose-detected head keypoints with 

YOLO-detected head bounding boxes, we create bounding 

boxes around the OpenPose head keypoints, as illustrated in 

Figure 5a. Then, we compute the coordinates of the centers 

for both the OpenPose-detected and YOLO-detected bounding 

boxes (called Pose’s head and YOLO’s head respectively), as 

shown in Figure 5b. Generally in a frame, there are multiple 

Pose’s heads and YOLO’s heads. To match their centers, we 

use the Euclidean distance d (measured in pixels) between 

them (as shown in Figure 5c) and utilize the linear sum 

assignment problem, as depicted in Table II. 

The linear sum assignment problem seeks to match the 

Pose’s heads to the corresponding YOLO’s heads by mini- 

mizing the total distance (sum of dij ) between their centers. 

This matching allows the skeletal data to be accurately linked 

to the corresponding individual identities. 
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TABLE II. OpenPose–YOLO heads assignment task. Suppose that there are 

3 head bounding boxes (A, B, C) detected by YOLO and 2 skeletons (1, 

2) with available head keypoints detected by OpenPose in a frame. 

D. Filtering for movement quantification 

After the integration of the OpenPose and YOLO for each 

video frame, the keypoints for the mother and the keypoints 

for the child are stored independently from one another. 

Collecting the data accross the frames of the video generate 

the time series data for each keypoint of each person (mother 

and child). In the following, we present some additional 

techniques aimed at reducing noise within the acquired time 

series data. Although these methods are implemented in our 

codebase, they are not applied in the analyses reported in 

Section V and therefore do not influence the presented results. 

1) Raw filtering: For the elimination of extreme values in

each time series, such as false detections, we implement a 

moving average (MA) technique. The MA serves as a simple 

low-pass filter, and is normally used to smooth time series 

data. In our framework, the raw filter is exclusively employed 

to eliminate abnormal data points. By utilizing the moving 

B. Performance of the proposed framework 

As mentioned in Section IV-B2, we trained five different 

models to analyze the performance trend as we increase the 

number of data samples. The five models are named according 

to the ratio of labeled images in each video used for fine- 

tuning: 1/1, 1/2, 1/3, 1/4, and 1/5. For each model, we collected 

results from each data fold, and subsequently computed the 

averages to obtain the final figures for training, validation, and 

test sets. 

Table III summarizes the average accuracies for different 

scenarios involving the utilization of varying data ratios for 

fine-tuning YOLOv7, while figures 6 and 7 present the F1- 

scores specifically for the mother and the child, respectively. 

TABLE III. Average results for different models fine-tuned by different 

ratios of data. 

Ratio of data *
 

Accuracy 
Training Validation Test 

1/5 0.9 ± 0.034 0.867 ± 0.037 0.867 ± 0.062 

1/4 0.936 ± 0.02 0.908 ± 0.027 0.903 ± 0.034 

1/3 0.937 ± 0.012 0.915 ± 0.022 0.913 ± 0.025 

1/2 0.953 ± 0.012 0.936 ± 0.021 0.929 ± 0.016 

1/1 0.965 ± 0.005 0.941 ± 0.014 0.944 ± 0.015 

* The ratio over the number of images that have been labeled. 

1.000 F1 Score vs. Data Ratio (Mother) 
average, outliers that significantly deviate from the current MA 

value by a specified threshold are effectively removed. 

2) Fine filtering: In our effort to further reduce noise in the

time series, the data obtained from the raw filter is subjected 

to an additional filtering  process aimed at  fine-tuning and 

smoothing the series. For this purpose, we employ a digital 

filter known as the SavGol (Savitzky–Golay) filter [43]. 

Using the fine filter yields time series data that is notably 

less noisy and smoother. This refined data is then better suited 
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for a variety of research purposes, including analyses related 

to synchrony and other research applications. 

V. TRACKING RESULTS 

This section presents the results of applying our proposed 

Fig.  6.  Average  results  for  different  models  fine-tuned  by different 

ratios of data - Mother. 

framework to the Singapore PCI dataset. It includes details on 

the evaluation metrics used and the performance of the models 

employed. 

The source code is open and available on GitHub at https: 

//github.com/thiethnguyen/MCI-pose-tracking. 

A. Evaluation metrics 

In our research, we employed OpenPose to generate the 
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pose and then integrated it with our fine-tuned head detection 

model to determine whether the generated pose corresponds to 

the mother, the child, or neither. Consequently, the evaluation 

metrics should access how effectively  the  model  classifies 

the pose into the 3 classes (mother, child, other). Therefore, 

we employed metrics commonly associated with classification 

tasks, such as accuracy and F1-score, to evaluate the perfor- 

mance of our proposed framework. 

1/5 1/4 1/3 1/2 1/1 
Ratio of data used in fine-tuning 

Fig.  7.  Average  results  for  different  models  fine-tuned  by different 

ratios of data - Child. 

Figures 6 and 7 show the trend of the mean F1-score as 

different portions of the labeled images are used for fine- 

tuning YOLOv7. Notably, the results show a general increase 

Pose’s Head / YOLO’s Head A B C
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in the averaged F1-score as the number of labeled images used 

for head detection model fine-tuning increases—a predictable 

trend. Nevertheless, the scores remain high across all data 

ratios. With only one-fifth of the labeled data (20 images per 

video), the F1-score on the test sets reaches approximately 

0.85, while using the full dataset (100 images per video) raises 

it by only about 0.09, to around 0.94. 

VI. USING THE PROPOSED FRAMEWORK

(a) Interaction of a 6 month-old child 
(left) 

(b) Interaction  of  a  12  month-old 
child (right) 

In this section, we apply the proposed framework to the 

task of calculating the total movement of the child in each 

video. This serves as a tutorial for anyone who wants to use 

our framework for their purposes. The application also demon- 

Fig. 8. Interaction of a 6 month-old child (left) and a 12 month-old child 

(right). (Images used with specific parental consent.) 

strates that the proposed framework effectively distinguishes 

between the skeletons of the mother, child, and others, and 

generates time series data for the keypoints. 

A. Defining the task 

1.0 
x 
y 

0.8 

0.6 

0.4 

0.2 

0.0 
0   2000 4000 6000 8000 10000 12000 14000 16000 

Frame 

(a) Neck location of a 6 month-old 
child (left) 
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(b) Neck location of a 12 month-old 
child (right) 

Using the time series of a person’s keypoint that has been 
filtered to remove noise, (i.e., an output of our proposed 
framework) the total movement of that keypoint throughout 
the video is calculated based on the summation of all the 
Euclidean distances the keypoint moves from a previous 
frame (t − 1) to the next frame (t).

B. Adoption of the framework 

The fine-tuned YOLO model was used to classify the 

extracted skeletons  in each  frame  of the  PCI  video. After 

that, the filtering techniques mentioned in Section IV-D were 

applied to preprocess the time series for each keypoint. 

With our current task of movement calculation, we obtained 

time series data of children’s neck movements from all the 

videos. Figure 9 presents selected time series data from two 

children in different videos (with corresponding snapshots 

shown in Figure 8), following completion of the preprocessing 

process. 
The total movements were then calculated using equations 

Fig. 9. Neck location of a 6 month-old child (left) and a 12 month-old 

child (right). 

C. Discussion on the result of the task 

As can be seen from Table IV, there is general increasing 

trend in the movement of the children when their ages are 

older. A distinct difference between the child of age 6 months 

with other children of older age groups can also be seen, 

where  the  normalized  total  movement  of  the  6  month-old 

child is much less than averages of other age groups. This is 

reasonable as the posture of the 6-month old infant is generally 

supine throughout the experiment, as compared with other 

older children who are able to stand, sit, run, walk during 

the experiment. It is also worth noting that even though the 

child is generally supine, the interactions with the mother have 

contributed to the value of the total movement, also not to 

mention the error of the OpenPose or the incapability of the 

filters to completely remove the noise of the time series data. 

Therefore,  the  results  in  Table  IV,  while  not  perfectly 

capturing  the  total  neck  movement  of  the  child,  can  still 

indicate the efficacy of our proposed framework. The steps 

outlined in this Section VI also provide a solid starting point 

for users interested in applying this method. 

VII. F URTHER DISCUSSIONS AND LIMITATIONS
1 and 2 with N0  = 15000 being used, as the standard video is 
defined as 10 minutes in length and at a frame rate of 25 FPS. 

As each participant has several videos, we picked the 

highest value of NTM among those videos as the number for 

that participant. We then calculated the mean and SD for the 

participants in the same age group. The results are shown in 

Table IV. 

When using general tracking algorithms, it is common to 

obtain a substantial number of tracking IDs for each individual, 

particularly in scenarios where human subjects exhibit exten- 

sive movement, interaction, and frequent entries and exits from 

the scene. An additional challenge arises from the fact that 

dyad members may share the same set of IDs. This can pose 

significant difficulties for coders and researchers, as it requires 

TM =

N∑
t=2

√
(xt − xt−1)2 + (yt − yt−1)2 (1)

where TM stands for total movement, t denotes frame index,
N denotes the total number of frames of the video. As the
lengths of the videos can be different, a normalized total
movement (NTM) is introduced as

TM
NTM = ×N0 (2)

N

where the factor N0 is the standardized number of frames of
a video.



TABLE  IV.  Average  normalized  total  movement  (NTM)  of the neck for 

different infant age groups. 

 

 

 
 

 

 
 

(1) The infants are categorized to suitable age group based on the closest to 
the actual age. 

 

 
careful observation of the output videos to accurately attribute 

the correct ID to the right individual at  various  points  in 

time. This discussion highlights the complexities of tracking in 

scenarios with dynamic human interactions, emphasizing the 

need for more specific tracking methods to improve precision 

and reduce the burden on researchers. 

The results presented in Section V-B indicate that it may 

not be necessary to use a large amount of sampled data for 

fine-tuning the head detection model to attain satisfactory 

results. In practical scenarios where time constraints exist, the 

option of reducing the number of sampled images requiring 

labeling becomes a viable consideration. This approach can 

help streamline the data labeling process without significantly 

compromising the quality of the head detection model. 

Our work presents a straightforward unified framework for 

dyadic pose extraction, suitable for researchers in psychology 

and child development studies who wish to use machine 

learning methods to analyze pose patterns in PCI videos. It 

also serves as a tutorial for non-experts outside the machine 

learning community, guiding them in selecting, implementing, 

and integrating various ML tools suited to their research 

needs. Our contribution primarily benefits a specific group 

of researchers in these fields, rather than making significant 

technical contributions to the broader machine learning or 

video analysis communities. It is also important to note that 

the dataset used in our study is modest in size and is still 

under development. 

 
VIII. CONCLUSION AND FUTURE WORK 

In this paper, we have introduced an integrated methodology 

that provides a robust and reliable system for extracting and 

tracking body poses, with a specific focus on mother-child 

interaction videos. Through the integration of OpenPose as 

a pose estimator and YOLOv7 as a head detector, we have 

been able to assign identifications to the skeletons detected. 

Our experimental findings have shown the efficacy of this 

framework, even when fine-tuning the head detection model 

with a relatively small subset of video frames. This suggests 

that the proposed methodology offers a practical and efficient 

solution for researchers working with mother-child interaction 

videos. The code and models shared within this research serve 

as a valuable contribution to the field, offering a useful tool 

that can be applied to various studies in the domain of child 

development and health. 

Our current and future directions include making the entire 

framework even easier for non-expert users, increasing the 

accuracy of the models for different cross-cultural interaction 

videos, and investigating the postural synchrony and coordi- 

nation between dyad members. 
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[18] B. Nojavanasghari, T. Baltrušaitis, C. E. Hughes, and L.-P. Morency, 
“Emoreact: a multimodal approach and dataset for recognizing emo- 
tional responses in children,” in Proceedings of the 18th acm interna- 
tional conference on multimodal interaction, 2016, pp. 137–144. 

[19] M. Doyran, R. Poppe, and A. A. Salah, “Embracing contact: Detecting 
parent-infant interactions,” in Proceedings of the 25th International 
Conference on Multimodal Interaction, 2023, pp. 198–206. 

[20] S. Alghowinem, H. Chen, C. Breazeal, and H. W. Park, “Body gesture 
and head movement analyses in dyadic parent-child interaction as 
indicators of relationship,” in 2021 16th IEEE International Conference 
on Automatic Face and Gesture Recognition (FG 2021). IEEE, 2021, 
pp. 01–05. 

[21] H. Chen, S. Alghowinem, S. J. Jang, C. Breazeal, and H. W. Park, 
“Dyadic affect in parent-child multimodal interaction: Introducing the 
dami-p2c dataset and its preliminary analysis,” IEEE Transactions on 
Affective Computing, vol. 14, no. 4, pp. 3345–3361, 2022. 

[22] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele, 
“Deepercut: A deeper, stronger, and faster multi-person pose estimation 
model,” in Computer Vision–ECCV 2016: 14th European Conference, 
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part 
VI 14.   Springer, 2016, pp. 34–50. 

[23] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose 
estimation and tracking,” in Proceedings of the European conference 
on computer vision (ECCV), 2018, pp. 466–481. 

[24] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: Re- 
altime multi-person 2d pose estimation using part affinity fields,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 43, 
no. 1, pp. 172–186, 2019. 

[25]  H.-S.  Fang,  J.  Li,  H.  Tang,  C.  Xu,  H.  Zhu,  Y.  Xiu,  Y.-L.  Li,  and 
C. Lu, “Alphapose: Whole-body regional multi-person pose estimation 
and tracking in real-time,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 2022. 

[26] M. Contributors, “Openmmlab pose estimation toolbox and benchmark,” 
https://github.com/open-mmlab/mmpose, 2020. 

[27] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution repre- 
sentation learning for human pose estimation,” in Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition, 2019, 
pp. 5693–5703. 

[28] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime 
tracking with a deep association metric,” in 2017 IEEE International 
Conference on Image Processing (ICIP).   IEEE, 2017, pp. 3645–3649. 

[29] Y. Xiu, J. Li, H. Wang, Y. Fang, and C. Lu, “Pose flow: Efficient online 
pose tracking,” arXiv preprint arXiv:1802.00977, 2018. 

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look 
once: Unified, real-time object detection,” in Proceedings of the IEEE 
conference on computer vision and pattern recognition, 2016, pp. 779– 
788. 

[31]  W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and 

A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision– 
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 
October 11–14, 2016, Proceedings, Part I 14. Springer, 2016, pp. 
21–37. 

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature 
hierarchies for accurate object detection and semantic segmentation,” 
in Proceedings of the IEEE conference on computer vision and pattern 
recognition, 2014, pp. 580–587. 

[33] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time 
object detection with region proposal networks,” Advances in neural 
information processing systems, vol. 28, 2015. 

[34] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 
Proceedings of the IEEE international conference on computer vision, 
2017, pp. 2961–2969. 

[35] T. F. Cootes, C. J. Taylor, D. H.  Cooper,  and  J.  Graham,  “Active 
shape models-their training and application,” Computer vision and image 
understanding, vol. 61, no. 1, pp. 38–59, 1995. 

[36] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour 
models,” International journal of computer vision, vol. 1, no. 4, pp. 
321–331, 1988. 

[37] A. L. Yuille, P. W. Hallinan, and D. S. Cohen, “Feature extraction from 
faces using deformable templates,” International journal of computer 
vision, vol. 8, pp. 99–111, 1992. 

[38] S. Anila and N. Devarajan, “Simple and fast face detection system based 
on edges,” International Journal of Universal Computer Sciences, vol. 1, 
no. 2, pp. 54–58, 2010. 

[39] G. Zhao and M. Pietikainen, “Dynamic texture recognition using local 
binary patterns with an application to facial expressions,” IEEE trans- 
actions on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 
915–928, 2007. 

[40] M. Sharif, A. Khalid, M. Raza, and S. Mohsin, “Face recognition using 
gabor filters.” Journal of Applied Computer Science & Mathematics, 
no. 11, 2011. 

[41] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and 
alignment using multitask cascaded convolutional networks,” IEEE 
signal processing letters, vol. 23, no. 10, pp. 1499–1503, 2016. 

[42] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable 
bag-of-freebies sets new state-of-the-art for real-time object detectors,” 
in Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 2023, pp. 7464–7475. 

[43] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data 
by simplified least squares procedures.” Analytical chemistry, vol. 36, 
no. 8, pp. 1627–1639, 1964. 


